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A B S T R A C T

Ensuring the safety and efficiency of Autonomous Vehicles (AVs) necessitates highly accurate perception, 
especially for lane detection and lane-change manoeuvres. Among object detection frameworks, “You Only Look 
Once” (YOLO) algorithms have emerged as prominent contenders due to their rapid inference and commendable 
accuracy. However, the broad spectrum of YOLO variants and their applications in complex, real-world envi-
ronments remain insufficiently mapped, necessitating a more integrative and critical perspective than what is 
typically offered by surveys. This comprehensive review synthesizes theoretical foundations, architectural in-
novations, and empirical evaluations of YOLO-based algorithms in AV-related tasks. It not only highlights key 
findings—such as the notable gains in real-time detection and adaptability to a range of driving conditions—but 
also explicitly identifies persistent gaps and limitations. These include difficulties in detecting subtle or degraded 
lane markings, handling unpredictable environmental factors like adverse weather and varied lighting, miti-
gating adversarial perturbations, and scaling effectively across diverse datasets and geographic regions. By 
critically examining these vulnerabilities, we illuminate the opportunities for refining YOLO's training para-
digms, optimizing model architectures, incorporating sensor fusion, and fostering universally applicable datasets. 
The implications of addressing these gaps extend beyond mere technical refinements. Proactively tackling 
YOLO's current challenges can expedite the realization of safer, more robust, and globally adaptable AV navi-
gation systems. In doing so, this review provides clear, actionable insights for researchers, engineers, and pol-
icymakers, guiding them toward strategic innovations that will strengthen AV perception and contribute to more 
reliable, future-ready transportation solutions.

1. Introduction

Road safety is a critical global priority, as it not only saves lives and 
prevents injuries but also minimizes property damage, ensures smooth 
traffic flow, and reduces the social and economic costs associated with 
accidents (Khayyam et al., 2020). Recent technological advancements, 
particularly in self-driving cars or Autonomous Vehicles (AVs), have 
sparked significant interest as a potential solution to enhance road safety 
and revolutionize transportation systems (Fayyazi et al., 2023a). AVs are 
equipped to analyze their surroundings and make informed decisions to

navigate roads safely with minimal or no human intervention. This 
technology offers several benefits, including reduced crash frequency 
and improved traffic efficiency (Kum Fai Yuen et al., 2020; Mola et al., 
2022) listed in Table 5.
However, despite these advantages, substantial challenges remain. 

According to the World Health Organization (WHO), 1.35 million peo-
ple lose their lives annually in vehicle collisions, with human error being 
the leading cause (Klaver, 2020). Contributing factors include excessive 
speeding, intoxicated driving, distractions such as mobile phone usage, 
and failure to use safety equipment like seat belts and helmets
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(Ming-Yuan Yu and Johnson-Roberson, 2019). AV technology holds the 
promise of mitigating such human-induced risks. Yet, challenges such as 
poor road conditions, complex topographies (e.g., sharp bends), severe 
weather, traffic congestion, accident liability concerns, and signal loss 
due to radar interference hinder widespread adoption. Among these, 
ensuring accurate and safe lane changes, a critical AV functionality, 
remains a significant hurdle. Failures in lane change systems have 
already resulted in severe accidents. For instance, in 2022, two fatal 
incidents involving Tesla's Autopilot system were attributed to failures 
in vision systems and object recognition (Greaser, 2022; Lambert, 2022). 
As the prevalence of AVs increases—projected to constitute 
three-quarters of all vehicles by 2040 (Newcomb, 2012)—addressing 
these challenges is imperative.
Lane changes, a core AV functionality, involve moving between lanes 

safely while avoiding collisions. This process requires effective lane 
detection, keeping within lane boundaries, and understanding lane 
characteristics. Despite advances in algorithms for lane keeping and 
detection, challenges persist, particularly in reliably identifying lanes 
under varying environmental conditions (Jian and Shi, 2020; Marzbani 
et al., 2019; Phan et al., 2020a; Milani et al., 2020; Zadeh et al., 2024). 
Robust object recognition systems are essential for maneuver planning, 
enabling AVs to detect stationary and moving objects, pedestrians, road 
signs, and lane markings (Hrag-Harouth Jebamikyous, 2022). Failures 
in object detection may lead to unsafe driving behavior, underscoring 
the need for continuous improvement in detection algorithms 
(Hrag-Harouth Jebamikyous, 2022; Ercan Avşar, 2022; Harisankar.R; 
Mehdi Masmoudi et al., 2019).
Numerous algorithms have been developed for object and lane 

detection, including Vanishing Point Guided Network (VPGNet) (L et al., 
2017), Mask Region-Based Convolutional Neural Network (Mask RCNN) 
(H et al., 2018), Spatial Convolution Neural Network (SCNN) (P et al., 
2017), Multi-Line Detection Conditional Random Fields model 
(MLD-CRF) (Hur et al., 2013), Boundary detection Network (RBNet) 
(Chen and Chen), LineNet (Dun Liang et al., 2020), and You Only Look 
Once (YOLO) (Jigang Tang and Liu, 2021). Among these, YOLO has 
emerged as a popular choice due to its exceptional speed and accuracy in 
real-time applications, particularly in AV systems (Peiyuan Jiang et al., 
2021). Unlike traditional methods that rely on multi-stage pipelines, 
YOLO simplifies object detection by framing it as a single regression 
problem. This enables YOLO to predict bounding boxes and class 
probabilities in a single evaluation, achieving remarkable detection 
accuracy and speed.
Other networks, such as VPGNet and SCNN, support multitask 

detection, handling road classification, boundary detection, and vehicle 
recognition. However, multitask models often face performance trade-
offs due to the added computational complexity (Dun Liang et al., 
2020). YOLO's ability to process images in real-time, coupled with its 
streamlined architecture, has made it a leading choice for AV applica-
tions (Peiyuan Jiang et al., 2021).
While significant progress has been made in detection and identifi-

cation techniques, a notable gap remains in the objective comparison of 
different methodologies, particularly their robustness across real-world 
scenarios. Systematic evaluations and benchmarking of these techniques 
are needed to understand their strengths and limitations comprehen-
sively. Such analyses will guide the development of more reliable 
detection methodologies tailored for AV applications.
This paper provides a comprehensive and critical examination of 

object detection algorithms and lane-change indices in the context of 
autonomous driving, placing special emphasis on the YOLO family of 
algorithms. By reviewing and synthesizing both theoretical frameworks 
and empirical performance outcomes—illustrated through comparisons 
on benchmark datasets like Karlsruhe Institute of Technology and 
Toyota Technological Institute (KITTI) and Common Objects in Context 
(COCO) - the study delineates YOLO's current strengths and pinpoint 
where its capabilities fall short. These identified gaps include challenges 
in reliably detecting subtle lane boundaries, adapting to varying

environmental conditions, mitigating adversarial influences, and 
ensuring generalizability across diverse traffic scenarios. Beyond high-
lighting these issues, the paper discusses their broader implications for 
AV safety, efficiency, and scalability. It also proposes avenues for future 
work aimed at addressing the identified shortcomings. These sugges-
tions, grounded in the observed limitations, may involve refining YOLO 
architectures to better handle complex roadway conditions, improving 
training and evaluation protocols to enhance robustness, or encouraging 
the development of standardized, representative datasets. By doing so, 
the paper contributes actionable insights that can guide subsequent 
research and development efforts toward more effective, reliable, and 
adaptable YOLO-based solutions for autonomous vehicles.
This paper is structured as follows: Section 2 describes the mathe-

matical modeling and indices for lane changes and object detection. 
Section 3 reviews existing lane detection models. Section 4 provides a 
detailed discussion of the YOLO algorithm and its variants. Section 5 
evaluates the applications and performance of YOLO variants. Section 6 
highlights research challenges and future directions. Finally, Section 7 
concludes the paper with key findings and recommendations.

1.1. Methodology

To ensure that this comprehensive review provides a thorough, un-
biased, and methodologically sound analysis of YOLO algorithms in the 
context of lane and object detection for autonomous vehicles (AVs), a 
systematic search and selection process was employed. This process was 
designed to identify relevant literature spanning foundational theoret-
ical contributions through to the latest advancements, ensuring both 
historical depth and contemporary relevance.

Search Strategy: The literature search was conducted across mul-
tiple reputable databases known for their coverage of computer vision, 
robotics, and transportation research, including IEEE Xplore, Spring-
erLink, ScienceDirect, and arXiv. The following keywords and Boolean 
combinations were used to ensure comprehensiveness and precision: 
“YOLO object detection,” “autonomous vehicles,” “lane detection,” 
“deep learning in transportation,” and “YOLO applications.” These terms 
were chosen to capture the intersection of YOLO-based methodologies 
with AV-specific tasks, ensuring that works addressing either general 
YOLO improvements, specialized variants, or direct AV-related de-
ployments were considered. To encompass both established founda-
tional studies and recent innovations, the search timeframe ranged from 
2006—capturing early influences on modern computer vision techni-
ques—to 2024. This interval ensured the inclusion of seminal works that 
have informed current YOLO architectures, as well as the latest research 
reflecting state-of-the-art solutions and ongoing challenges in AV 
applications.

Selection Criteria: The initial screening involved reviewing titles, 
abstracts, and keywords to eliminate sources not directly relevant to 
YOLO algorithms in the AV context. Subsequently, a full-text review was 
performed on the remaining papers.

Inclusion Criteria:

• Studies that explicitly involve YOLO-based algorithms (original or 
variants) applied to lane detection, object recognition, or related 
perception tasks in AV environments.

• Works presenting empirical results (e.g., mean Average Precision 
[mAP], Frames Per Second [FPS], or accuracy metrics), comparative 
analyses, or detailed technical insights into YOLO's adaptation for AV 
scenarios.

• Peer-reviewed journal articles, conference proceedings, and repu-
table preprints in English, ensuring both academic rigor and 
accessibility.

Exclusion Criteria:
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• Publications lacking empirical validation, technical detail, or direct 
relevance to YOLO and AV perception.

• Non-English sources or duplicates identified across multiple 
databases.

• Opinion articles, editorials, or short commentaries without meth-
odological depth.

Through this filtration process, the focus remained on high-quality, 
substantively relevant sources. Table 1 illustrates how the collected 
literature was categorized according to specific application domains (e. 
g., lane detection, traffic monitoring, vehicle tracking), further ensuring 
a structured and contextually relevant data set.

Framework for Analysis: A conceptual framework guided the 
synthesis of selected studies to ensure that the review transcended a

mere cataloging of methods:

1. Categorization by Domain and Task: Studies were grouped by their 
primary AV-related application (e.g., lane detection, object identi-
fication, adversarial robustness), enabling targeted comparative 
analysis of YOLO's performance across diverse yet thematically 
linked contexts.

2. Performance and Benchmarking: The analysis recorded key perfor-
mance metrics and datasets commonly used in YOLO evaluations (e. 
g., KITTI, COCO). By comparing various YOLO iterations within 
consistent benchmarks, the review delineates improvements, 
persistent challenges, and context-specific strengths or weaknesses.

3. Architectural and Methodological Evolution: YOLO versions and 
custom variants were examined to identify patterns in architectural

Table 1
Categorization of research studies based on keywords and references related to YOLO applications in autonomous vehicles.

GROUPING KEYWORDS REFERENCES RETURNED

Object Detection for Autonomous Driving 
using YOLO

YOLO + Object Detection + 

Autonomous Driving
(Abhishek Sarda and Anupama Bhan), (Al-Saadi et al., 2022), (Mohanapriya et al.), (K and 
Nivetha), (Yingfeng Cai et al., 2021), (Yunfan Chen et al., 2022), (Zaghari et al., 2021), ( 
Donghao Qiao, 2020), (Prithwish Sen and Sahu, 2022), (Jiwoong Choi et al.), (Aduen 
Benjumea et al., 2020), (Cheng Han et al., 2022), (Shen et al., 2023), (Jing J et al., 2020), ( 
Jinjie Zhou et al., 2023), (Xu et al., 2023), (Cao et al., 2023), (Wibowo et al., 2023), (Diwan 
et al., 2023), (Chaudhry, 2024), (Ren et al., 2024), (Özcan et al., 2024), (Li et al., 2024), (Khan
et al., 2024), (Bao and Gao, 2024)

YOLO-based Traffic Monitoring YOLO + Traffic Monitoring (Al-qaness et al., 2021), (Dewi et al., 2022), (Mistry and Degadwala), (Imanuel et al., 2024), ( 
Flores-Calero et al., 2024), (Tang et al., 2024), (Kalva et al.), (Song et al., 2023), (Ali and 
Jalal), (Wang and Yu), (Sravanthi et al.), (Zhou et al., 2023), (Varshney et al.)

Energy Management for Autonomous 
Vehicles

Autonomous Vehicles + Energy 
management + Control

(Fayyazi et al., 2023b), (Phan et al., 2020b), (Zadeh et al., 2024), (Al-Saadi et al., 2022), ( 
Phan et al., 2020b)

YOLO-based Vehicle Identification and 
Tracking for Autonomous Vehicles

YOLO + Vehicle Identification + 

Vehicle Tracking
(Azevedo and Santos), (Ercan Avşar, 2022), (Zhang et al.), (Chen et al., 2021), (Pandilwar and 
Kaur), (Prathap et al.), (Athish et al.), (Samsuri and Mohd Nazri), (Rani et al., 2024), (Soma 
et al.), (Naresh et al.), (Yass and Faris, 2023), (Farid et al., 2023)

Vehicle Speed Estimation with YOLO YOLO + Speed Estimation + 

Autonomous Vehicles
(Asif Hummam Rais, 2021), (Rodríguez-Rangel et al., 2022), (Pandilwar and Kaur), (Do
et al.), (Cvijetić et al.), (Peruničić et al.), (Vela et al.), (Soma et al.), (Lin et al., 2021), (Prajwal 
and Kumar), (Pemila et al., 2024), (Imanuel et al., 2024)

YOLO based algorithm in tackling adversarial 
perturbations in Autonomous vehicles.

YOLO + Autonomous Driving + 

adversarial perturbations
(Im Choi and Tian), (Jia et al., 2022), (Wu, 2024), (Jiang et al., 2023), (Li et al.), (Liang et al., 
2024)

Object detection Algorithm Object detection models + YOLO
+ Autonomous vehicles

(Hrag-Harouth Jebamikyous, 2022; Ercan Avşar, 2022; Harisankar.R; Mehdi Masmoudi
et al., 2019), (L et al., 2017), (H et al., 2018), (P et al., 2017), (Hur et al., 2013), (Chen and 
Chen), (Dun Liang et al., 2020), (Mao et al., 2023), (Balasubramaniam and Pasricha, 2022), ( 
Mahaur and Mishra, 2023), (Song et al., 2024), (Wang et al., 2024a), (Wang et al., 2024b), ( 
Tahir et al., 2024), (Radha Pandey, 2021)

Lane detection Algorithm Lane detection models + YOLO + 

Autonomous vehicle
(Lefevre et al., 2014), (Alin et al.), (Jigang Tang and Liu, 2021) (Huu et al., 2022), (Zakaria
et al., 2023), (Jha et al., 2023), (Perumal et al., 2023), (Swain and Tripathy, 2024), (Öztürk
et al., 2024), (Ji and Levinson, 2020), (Kim et al., 2008), (Mondschein et al., 2006), (Du et al., 
2022), (Tu Zheng et al., 2022), (Yongqi Dong et al., 2021), (Lizhe Liu et al., 2021), (Tu Zheng 
et al., 2022), (Seokju Lee et al., 2017a), (Seokju Lee et al., 2017b), (Farzeen Munir et al., 
2020), (Dong-Hee Paek and Wijaya, 2021), (Mohanapriya et al.; Phat Nguyen Huu and Tong 
Thi Quynh, 2022; Wei Yang et al., 2020; Xiang Zhang et al., 2018), (Edward Swarlat Dawam, 
2020), (Dai et al., 2024), (Cao et al., 2024), (Liu et al., 2024)

YOLO algorithm and its application YOLO + Application + Object 
detection

(Peiyuan Jiang et al., 2021), (J and Zhiqiang, 2017), (Zhiqiang and Jun), (Jiaqi Fan and Li), ( 
Udaya Mouni Boppana et al., 2022), (Lecun et al., 1998), (Redmon and Farhadi, 2016), ( 
Redmon and Farhadi, 2018), (Silva et al.), (Lu et al.), (Yang et al.), (Abhishek Sarda and 
Anupama Bhan; Yingfeng Cai et al., 2021; Kangkang Yang, 2022; Rui Wang et al., 2021), ( 
Hussain and Finelli), (Solawetz, 2020), (Joseph Nelson, 2020), (L et al., 2022), (Wang et al.), ( 
Zhiyang Zheng and Qin, 2023), (Chao Zhao et al., 2023), (Yulong Nan et al., 2023), (Huayi 
Zhou and Lu, 2023), (Xianchong Xu et al., 2023),
(Lian et al., 2023), (Wei et al., 2023), (Wan et al., 2022), (Lee and Hwang, 2022), (G et al., 
2021), (Ma et al.), (Ji and Zheng, 2021), (Mehdi Masmoudi et al., 2021), (Zillur Rahman and 
Ullah, 2020), (M and Ghantous, 2022; Kahlil Muchtar and Nasaruddin, 2020; Mario 
Gluhaković et al., 2020), (William Chin Wei Hung et al., 2022), (Liberios Vokorokos et al., 
2020), (Deshpande and Herunde, 2020), (Irvine Valiant Fanthony et al., 2021), (Huibai Wang, 
2020), (Wen Boyuan, 2020), (Shen Zheng et al., 2021), (Kim, 2019), (Geiger and Lenz, 2013). 
(B and PunithaMohana; Liu, 2022; Li et al., 2023; Yang et al., 2021; Lippi et al., 2021; Xiang 
et al., 2023; Li. et al., 2023; Dos Reis et al., 2019; Malta et al., 2021; Narejo et al., 2021; 
Zheng et al., 2022; Wang et al., 2023; Gündüz and Işık, 2023a; Gündüz and Işık, 2023b; Yang 
et al., 2023; Yu et al., 2018)

Road Safety and autonomous driving Transportation + Safety + 

Autonomous driving
(Khayyam et al., 2020), (Fayyazi et al., 2023a), (Kum Fai Yuen et al., 2020; Mola et al., 2022), 
(Klaver, 2020), (Ming-Yuan Yu and Johnson-Roberson, 2019), (Greaser, 2022), (Lambert, 
2022), (Newcomb, 2012), (Jian and Shi, 2020; Marzbani et al., 2019; Phan et al., 2020a; 
Milani et al., 2020), (Dagdeviren, 2018), (Teena Sharma et al., 2022)
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enhancements, training procedures, and loss functions. This facili-
tated an understanding of how incremental modifications translate 
into improved performance for AV lane and object detection tasks.

4. Identifying Gaps, Limitations, and Future Directions: As a compre-
hensive review, the analysis went beyond summarizing current ca-
pabilities, highlighting unresolved issues such as handling subtle 
lane boundaries, coping with adverse weather or lighting conditions, 
resisting adversarial attacks, and addressing dataset limitations. 
Based on these findings, the paper proposes future research di-
rections aimed at refining YOLO and guiding it toward more robust, 
reliable applications in AV systems.

Limitations of the Methodology: While the methodology was 
designed to be thorough and unbiased, certain limitations are 
acknowledged. Restricting the review to English-language publications 
may have excluded relevant non-English studies. Moreover, relying on 
established academic repositories may omit some emergent research 
from less prominent sources. Nevertheless, the outlined strategy ensures 
a systematically curated and analytically coherent body of literature, 
providing a solid foundation from which to understand YOLO's current 
position and potential trajectory in advancing autonomous vehicle 
perception.

2. Mathematical modelling for lane and object detection in 
autonomous driving

This section introduces a mathematical model and indices for lane 
changes and object detection, forming the foundation for accurate 
detection algorithms critical to safe lane-changing manoeuvres. Many 
existing solutions for autonomous lane changes and lane detection rely 
heavily on estimation methods, which often exhibit significant limita-
tions, particularly in the context of AV safety. These methods are typi-
cally based on assumptions and approximations, leading to inaccuracies 
and unreliable outcomes. Furthermore, they frequently neglect key 
factors, such as dynamic vehicle behaviours and environmental vari-
ability, which are essential for precise detection and decision-making. 
The effectiveness of AV systems heavily depends on the accuracy of 

their detection capabilities, as errors during lane changes can jeopardize 
safety. The coexistence of autonomous and human-driven vehicles adds 
complexity, requiring robust detection algorithms that can adapt to 
dynamic and unpredictable driving environments. Our research focuses 
on improving the reliability and performance of lane change and lane 
detection systems using YOLO algorithms, which are renowned for their 
real-time precision and resilience in handling complex, multi-object 
scenarios.
Reliable detection is pivotal to AV safety, particularly during lane 

changes. As shown in Fig. 1a and b, poor detection capabilities can lead 
to inaccurate estimations, increasing the risk of unsafe manoeuvres. This 
impact can be evaluated using safety and space payoff functions, which 
assess how detection accuracy affects vehicle interactions. The safety 
payoff (U Safety ) quantifies changes in the safety factor throughout the 
lane-changing process and is defined by Equation (1):

U Safety =
1
2 
( 
SP t=T cl − SP t=0 

) 
(1)

where SP t=T cl is the safety factor at the end of the lane change, SP t=0 is 
the initial safety factor, and T cl is the time required to complete the 
manoeuvre (Yu et al., 2018). The safety factor at any given time t de-
pends on the time headway (T headway t ) and a breakpoint (T b ), as 
expressed in the following equation:

SP t =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 T headway t ≤ − T b

2 
⃒
⃒ T headway t|

T b
− 1 − T b < T headway t ≤ T b

0 T headway t > T b

(2)

This piecewise function evaluates the safety factor as follows:

1. Unsafe Region ( T headway t ≤ − T b ): When the time headway is less
than or equal to − T b , the safety factor remains at 1, indicating un-
safe conditions.

2. Critical Region ( − T b < T headway t ≤ T b 
) 
: The safety factor decreases

linearly with 
⃒
⃒ T headway t|, reflecting the increasing risk as the vehicles

approach each other.
3. Safe Region (T headway t > T b , the safety factor remains at 1, signi-
fying safe conditions.

The initial time headway between vehicles is given by:

Theadway t=0 = 
P 1 − P 2

V 2
(3)

where P i denotes the initial longitudinal position of vehicle i, and V i 
represents its velocity. The time headway after T cl seconds considers 
relative positions and adjusted velocities:

T headway t=T cl =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

P 1l − P 2l
v 2 + a 2 T cl

P 1l ≥ P 2l

P 2l − P 1l
v 1 + a 1 T cl

P 1l < P 2l
(4)

Here, P 1l and P 2l are the longitudinal positions of vehicles 1 and 2 after 
T cl , calculated using:

P 1l = P 1 + v 1 T cl +
1 
2 
a 1 T2cl (5)

P 2l = P 2 + v 2 T cl +
1 
2 
a 2 T2cl (6)

where a 1 and a 2 are the accelerations of vehicles 1 and 2. These equa-
tions form the basis for evaluating the safety payoff during lane changes. 
The space payoff (U space ) measures changes in the space factor (RP) be-
tween vehicles:

U space =
1
2 
( 
RP t=T cl − RP t=0 

) 
(7)

where RP quantifies the spatial relationship between interacting vehi-
cles (Yu et al., 2018). When two cars move in different lanes, the space 
factor (RP21_2) is defined as:

RP 21 2 (t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

− 1 t 21 (t) ≤ − 3
2
3 
t 21 (t) + 1 − 3 < t 21 (t) ≤ 0

1 t 21 (t) > 0

(8)

where t 21 (t) is the time gap between vehicles, given by: 

t 21 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩ 

P 2 − P 1
v 2

P 2 ≤ P 1

P 2 − P 1
v 1

P 2 > P 1
(9)

where P i represents the initial longitudinal position of vehicle i relative 
to the road coordinate system, and v i denotes its initial velocity. The 
time gap (t 12 ) between the vehicles is expressed as:

t 12 = 
P 1 − P 2
v following

= −
P 2 − P 1
v following 

= − t 21 (10)

Here, v following is the velocity of the following vehicle. Since the total 
payoff function incorporates t 12 for scenarios where the competing lane 
is occupied by Car 2, the relationship between the space factors of the 
interacting vehicles is defined as:
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RP 12 2 (t) = − RP 21 2 (t) (11)

This relationship ensures that the space factor for one vehicle (RP 12 2 
) is the inverse of the other (RP 21 2 ), maintaining consistency in evalu-
ating the spatial dynamics of vehicle interactions. When two cars move 
in the same lane, the space factor of Car 2 in the instant t is calculated by: 

RP 21 2 (t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

− 1 t 21 (t) ≤ − 3

t 21 (t)
3

− 3 < t 21 (t) ≤ 3

1 t 21 (t) > 3

(12) 

The total payoff function combines safety and space payoffs,
weighted by the driver's aggressiveness (q):

U payoff = f w (a, a 0 ) 
( 
(1 − β(q))*U safety (a) + β(q)*U space (a) + 1 

) 
− 1, 0 ≤ β(q)

≤ 1
(13) 

Here, a represents the vehicle's future acceleration, while a 0 denotes
its current acceleration. The parameter q captures the driver's aggres-
siveness and follows a Gaussian probability distribution N (0,1). The 
function f w serves as a penalty term, accounting for abrupt changes in 
acceleration (i.e., jerk) and velocity, ensuring smoother transitions 
during manoeuvres. The payoff function incorporates two key compo-
nents: U safety , representing the safety payoff, and U space , representing the 
space payoff. The weight of each component is determined by β(q), the 
cumulative distribution function of q, which adjusts the balance be-
tween safety and space considerations. Specifically:

• β(q)*U space quantifies the total space payoff.
• 
( 
(1 − β(q))*U safety quantifies the total safety payoff.

The parameter β(q) plays a critical role, as it determines the ratio 
between the space and safety payoffs, reflecting the trade-off between 
these two objectives. A higher β(q) prioritizes spatial considerations, 
while a lower β(q) emphasizes safety. This dynamic weighting mecha-
nism allows the model to adapt to varying driving scenarios and driver 
behaviours.
Existing solutions and theories addressing autonomous lane changes 

and lane detection are predominantly estimation-based, yet these

methods have inherent limitations that compromise their reliability and 
safety in critical applications like AV technology. Estimation methods 
rely on assumptions and approximations, which often lead to inaccur-
acies. Given the high stakes of AV operations, such inaccuracies cannot 
be tolerated. The complexity of autonomous lane changes and the 
quality of data used for estimation further exacerbate the problem, 
resulting in unreliable outcomes. This poses significant risks in scenarios 
requiring precise decisions, such as lane changes. Additionally, estima-
tion methods are prone to biases stemming from the data or estimator, 
which may skew results and lead to suboptimal decision-making. 
Addressing these biases is essential to ensure accurate and safe 
manoeuvres. 
Another drawback of estimation-based solutions is their opacity; 

they often involve intricate algorithms or models that are difficult to 
interpret. This lack of transparency hampers the validation and assess-
ment of their reliability, making it challenging to detect and rectify
potential errors or biases. Furthermore, such methods frequently over-
look critical factors or variables that could significantly impact their 
performance, leading to incomplete or flawed conclusions. In the 
context of AVs, this limitation heightens safety risks during complex 
manoeuvres like lane changes.
The performance of lane-change manoeuvres in AVs is closely tied to 

two primary factors: detection accuracy and interaction with sur-
rounding vehicles. Safety and space payoffs, critical components of lane-
changing, depend on accurate detection. The safety factor hinges on 
identifying and localizing nearby vehicles, while the space factor, 
measured by the Relative Position (RP) value, determines a vehicle's 
ability to maintain a safe headway. A comparative analysis of detection 
techniques is crucial to address these challenges effectively. 
Furthermore, the coexistence of autonomous and traditional human-

driven vehicles on the road, as predicted for the foreseeable future 
(Dagdeviren, 2018), introduces additional unpredictability to traffic 
dynamics. This mixed-traffic environment amplifies the need for precise 
detection and reliable prediction capabilities. AVs must not only detect 
and communicate with other AVs using Vehicle-to-Vehicle (V2V) tech-
nologies but also anticipate the behaviour of non-autonomous vehicles 
(Khayyam et al., 2020; Al-Saadi et al., 2022; Phan et al., 2020b). 
Object detection is pivotal in autonomous driving, ensuring the 

identification and localization of objects in dynamic environments to 
support safe navigation and decision-making. Mao et al. (2023)

Fig. 1. Lane-changing scenarios: a) The competing vehicle hinders Car 2 from overtaking (aggressive competing vehicle). b) Car 1 strategically adjusts its position, 
enabling Car 2 to complete the overtaking manoeuvre safely and efficiently (Cautious competing vehicle). This figure is regenerated from Fig. 1 of reference (Yu 
et al., 2018).
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provided a comprehensive review of three-dimensional object detection 
methodologies, highlighting the evolution from traditional Light 
Detection and Ranging (LiDAR)-based methods to advanced multimodal 
approaches integrating LiDAR, radar, and camera data for enhanced 
robustness. Complementing this, Balasubramaniam and Pasricha (2022) 
discussed ongoing challenges in object detection for AVs, such as 
computational complexity and the need for real-time performance, 
particularly under adverse weather conditions.
The detection of small objects, a critical requirement for identifying 

vulnerable road users like pedestrians and cyclists, has seen significant 
advancements. Mahaur and Mishra (2023) demonstrated improvements 
in small-object detection by enhancing YOLOv5, Fig. 2, while Wang 
et al. (2024a) proposed YOLOv8-QSD, optimized for small-object 
detection in complex road scenarios. Both studies underscore the 
importance of balancing detection accuracy and computational effi-
ciency shown in Fig. 3.
Adverse weather conditions pose significant challenges to object 

detection models. Appiah and Mensah (2024) addressed this issue by 
integrating data augmentation and adversarial training techniques, 
enhancing robustness in challenging environments like fog and rain. 
Similarly, Tahir et al. reviewed traditional and deep learning ap-
proaches, emphasizing the necessity for advancements to maintain 
performance under extreme conditions. Wang et al. (2024b) illustrated 
the efficacy of YOLOv4 in urban object detection but noted the 
computational limitations for deployment on resource-constrained sys-
tems. Song et al. (2024) further highlighted the importance of 
robustness-aware training datasets and adversarial resilience to ensure 
reliability across diverse scenarios.
To overcome these challenges, advanced object detection algorithms 

have emerged as critical tools for enhancing AV safety and performance 
during lane-change manoeuvres. These algorithms, with their high ac-
curacy, real-time perception capabilities, and robustness in complex 
scenarios, address major issues like variability, dynamic environments, 
and human driving behaviour. Addressing these challenges requires a 
synergistic approach combining robust sensor technologies, advanced 
machine learning techniques, and continuous adaptation to real-world 
conditions (Khayyam et al., 2020; Milani et al., 2020; Al-Saadi et al., 
2022).

3. Overview of lane detection models for autonomous vehicles

Accurate lane detection is an indispensable component of autono-
mous vehicle systems, ensuring precise navigation and safety in dynamic 
driving environments. Effective lane detection helps prevent potential 
dangers and accidents, playing a pivotal role in facilitating successful 
lane changes. Recent advancements have introduced a variety of ap-
proaches, ranging from traditional computer vision techniques to so-
phisticated deep learning models. This section synthesizes findings from 
notable studies on lane detection algorithms, emphasizing their meth-
odologies, applications, and relevance to autonomous driving.
Huu et al. (2022) proposed a YOLO-based lane and obstacle detec-

tion algorithm, optimized for advanced network architectures in 
self-driving cars. This innovative method integrates real-time lane 
detection with obstacle avoidance, showcasing the adaptability and ef-
ficiency of YOLO in handling simultaneous tasks in dynamic scenarios. 
Similarly, Zakaria et al. (2023) conducted a systematic review of lane 
detection techniques, categorizing existing algorithms into traditional 
methods (e.g., Hough Transform and Canny Edge Detection) and mod-
ern approaches employing convolutional neural networks (CNNs). Their 
findings highlighted the superior accuracy of deep learning models in 
addressing complex lane geometries and challenging conditions, though 
computational costs remain a critical limitation for real-time 
deployment.
Jha et al. (2023) analysed lane and object detection methods, 

emphasizing the importance of integrating both functionalities for ho-
listic autonomous driving systems. Their study underscored the 
real-time efficiency of YOLO-based models for lane detection but iden-
tified challenges in scenarios involving faded or occluded lane markings. 
Perumal et al. (2023) introduced LaneScanNET, a multi-task learning 
architecture designed for simultaneous lane and obstacle detection. This 
integrated approach reduced computational overhead while maintain-
ing high accuracy, demonstrating its potential in resource-constrained 
settings.
Swain and Tripathy (2024) utilized YOLOv5's segmentation capa-

bilities to develop a robust lane detection framework capable of 
handling complex road scenarios, including curves and intersections. 
Despite its strong performance, further optimization was noted to 
enhance adaptability to diverse environmental conditions. Öztürk et al.
(2024) extended YOLOv5 to incorporate lane detection alongside 
vehicle, traffic sign, and pedestrian recognition, creating a

Fig. 2. Detection performance comparison in varying traffic environments: (a) YOLOv5 and (b) improved Scaled (iS)-YOLOv5. As traffic density increases from top to 
bottom, YOLOv5's prediction confidence decreases, leading to missed targets. In contrast, the proposed iS-YOLOv5 model maintains high confidence in detecting 
traffic signs and traffic lights, even in high-density traffic scenarios. This figure is regenerated from Fig. 8 of reference (Mahaur and Mishra, 2023).
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multi-functional framework for comprehensive traffic scene under-
standing. However, achieving consistent lane detection under adverse 
weather and lighting conditions remains a challenge.
In addition to lane detection, several theoretical frameworks support 

lane-changing decisions. These include Game Theory (Ji and Levinson, 
2020), Gap Acceptance Theory (Kim et al., 2008), Cognitive Mapping 
Theory (Mondschein et al., 2006), and Lane Change Safety Index Theory 
(Du et al., 2022). While these theories provide valuable insights, their 
practical applications often depend on accurate and reliable lane 
detection systems.
Table 2 provides a detailed comparison of existing lane detection 

models, outlining their advantages and limitations. This comparative 
analysis highlights specific challenges such as computational costs, 
flexibility, robustness in complex scenarios, and sensitivity to occlusions 
or small lanes. YOLO-based models offer significant advantages, 
including real-time perception and adaptability to multi-object detec-
tion tasks. However, further research is required to leverage their po-
tential fully.
Since the introduction of YOLO in 2015 (J and Zhiqiang, 2017), 

successive versions have evolved to address various object detection 
challenges, making YOLO a significant milestone in real-time vision-- 
based algorithms. Table 3 outlines the timeline of YOLO development, 
showcasing the distinguished features and limitations of each version, 
from YOLOv1 to YOLOv11. The progression of YOLO demonstrates 
continuous improvements in detection accuracy, computational effi-
ciency, robustness to occlusion, and adaptability to different environ-
ments. For instance, YOLOv5 introduced advanced features such as 
Cross Stage Partial (CSP)-Darknet-53 as a backbone, enhancing speed 
and accuracy for autonomous systems. More recent versions like 
YOLOv10 and YOLOv11 focus on lightweight models with gradient flow 
optimization and small-object detection capabilities, making them 
particularly suitable for real-time applications in resource-constrained 
settings listed in Table 4.
YOLO's ability to handle real-time object detection has made it a 

promising algorithm for autonomous vehicles (AVs). Its application 
spans diverse challenges, including severe weather conditions, low-light 
environments, occlusion handling (Ming-Yuan Yu and 
Johnson-Roberson, 2019), and intelligent traffic monitoring (Teena 
Sharma et al., 2022). The timeline illustrates how YOLO has adapted to 
meet the increasing demands of AV applications, addressing specific 
needs such as multi-object detection, improved localization, and better 
performance in cluttered or dynamic scenarios.

Peiyuan Jiang (Peiyuan Jiang et al., 2021) reviewed the progression 
of YOLO, emphasizing its advancements in feature extraction and target 
recognition, highlighting its role as a versatile and efficient detection 
system. While other studies, such as those by Radha Pandey (Radha 
Pandey, 2021) and Mehdi Masmoudi (Mehdi Masmoudi et al., 2019), 
evaluated object detection algorithms, they did not focus specifically on 
YOLO's real-time applications for AVs. Similarly, Udaya Mouni Boppana 
and Deivanayagampillai (Udaya Mouni Boppana et al., 2022) compared 
YOLO versions using distorted vehicle datasets, demonstrating their 
effectiveness under challenging conditions. Notably, YOLO has been 
shown to perform robustly under adverse conditions such as heavy rain 
or fog, where traditional methods often fail. However, existing research 
often overlooks YOLO's role in lane detection and lane-changing tasks, 
which are critical for the safety and functionality of AV systems.
This survey bridges that gap by focusing on YOLO's application in 

lane detection and manoeuvring. It identifies gaps in current method-
ologies, such as limited generalization across datasets and challenges in 
real-time adaptability for diverse driving environments. Furthermore, it 
highlights opportunities for future advancements, aiming to improve the 
reliability and safety of autonomous vehicles in complex driving sce-
narios. By exploring YOLO's potential in addressing these challenges, 
this review lays the groundwork for developing more advanced algo-
rithms that integrate object detection with lane-detection tasks, ulti-
mately enhancing AV performance and traffic safety.

4. Description of YOLO

Encouraged by the LeNet (Lecun et al., 1998) architecture for image 
classification, the original YOLO (version 1) architecture was developed 
as a Convolutional Neural Network (CNN) comprising 24 convolutional 
layers interspersed with max-pooling operations, followed by two fully 
connected layers at the end (Fig. 4). This architecture is designed around 
three main components: the Backbone, Neck, and Head. The Backbone 
represents the initial stage of the network, where convolutional layers 
are used to apply filters for preprocessing the input image. These layers 
progressively detect and process key features, starting from basic pat-
terns like lines and edges to more complex geometries, ultimately 
enabling the identification of objects within the scene. The Neck serves 
as an intermediary layer, bridging the Backbone and the Head. It con-
sists of fully connected feed-forward layers that aggregate and refine 
features extracted by the Backbone. This stage is critical for predicting 
object classification probabilities and proposing bounding boxes around

Fig. 3. Comparison of detection results using three representative images. In these images, the vehicle in front is partially obscured by the vehicle behind it. When 
using the baseline YOLOv8n model, the front vehicle cannot be detected due to significant occlusion. However, with the application of Soft- Non-Maximum Sup-
pression (NMS), the obscured vehicle is successfully detected, demonstrating improved detection performance under occlusion scenarios. This figure is regenerated 
from Fig. 11 of reference (Cao et al., 2024).
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detected objects. The Head, which is the final component, generates the 
network's output. It applies anchor boxes to the refined feature maps 
from the Neck and produces final output vectors that include class 
probabilities, objectness scores, and bounding box coordinates. This 
modular structure of YOLO allows flexibility, as the Head can be 
replaced or customized to adapt to specific tasks or datasets, demon-
strating its versatility in various object detection applications.

4.1. Key processes in the YOLO algorithm

Fig. 4 provides an overview of the fundamental steps involved in the 
YOLO algorithm. The process begins with the division of the input image 
into an N × N grid of equally shaped cells. Each grid cell is assigned the 
responsibility of localizing and predicting the class of the object it 
overlaps with, along with a probability or confidence value for that 
prediction. Once the image is divided into grids, the algorithm employs 
Bounding Box Regression to determine bounding boxes, which are 
rectangular regions highlighting all the detected objects within the 
image. Since an image may contain multiple objects, YOLO uses a single 
regression module to extract the attributes of these bounding boxes in a 
unified manner.
To refine the results, Intersection over Union (IOU) is applied to filter 

and retain the relevant grid cells, ensuring precise localization of the 
detected objects. Non-Maximum Suppression is then used to eliminate 
redundant bounding boxes, retaining only those with the highest prob-
ability scores for each detected object. This approach ensures that the 
output is concise and efficient, providing accurate localization and 
classification.
The architecture of YOLO enables it to learn highly generalized 

features, allowing it to achieve superior detection speeds compared to 
other state-of-the-art detection methods, such as Region-Based Con-
volutional Neural Networks (R-CNN, Faster R-CNN, Mask R-CNN, and

Granulated R-CNN) (Jiaqi Fan and Li). However, YOLO has certain 
limitations. The algorithm struggles with detecting small objects and 
distinguishing them when displayed in groups, such as a line of ants or 
densely packed items. Furthermore, YOLO's accuracy is generally lower 
compared to two-step object detection algorithms like Fast R-CNN, 
which use more elaborate mechanisms for classification and localiza-
tion. Despite these limitations, YOLO remains a powerful and widely 
adopted algorithm for object detection due to its real-time performance 
and simplicity.

4.2. Performance metrics

Evaluating the performance of YOLO algorithms involves a 
comprehensive framework that relies on various performance metrics to 
assess their accuracy, localization capability, and computational effi-
ciency. Among these metrics, Recall and mAP are the most critical for 
determining the model's effectiveness. Recall measures the model's 
ability to detect objects present in the input image, with values closer to 
100 % indicating better detection performance. Precision evaluates the 
proportion of correct predictions among all predictions, with values 
ranging from 0 to 1, where higher values indicate fewer false detections 
and better accuracy.
The evaluation framework for YOLO algorithms often incorporates 

the 'true-false' and 'positive-negative' criteria, providing a structured 
approach to analyze detection performance. These criteria include True 
Positive (TP), False Positive (FP), False Negative (FN), and True Nega-
tive (TN). A True Positive (TP) is recorded when the algorithm correctly 
detects an object, and the predicted bounding box overlaps with the 
ground truth box above a specified IoU threshold. False Positives occur 
when the algorithm incorrectly predicts a bounding box for a non-
existent object or when the overlap with the ground truth box is 
below the IoU threshold. False Negatives represent cases where the

Table 2
Comparative analysis of lane detection models - datasets, advantages, and limitations.

STUDY DATASET MODEL TYPE ADVANTAGES DRAWBACK

Tu Zheng et al. (2022) cuLANE CLRNET (DLA-34) Detect Lanes and improved localization 
accuracy

Fixed architecture limits flexibility; 
unsuitable for all applications; limited 
generalization.

Yongqi Dong et al. (2021) TuSimple SCNN_UNet_ConvLSTM2 Detect Lanes in challenging driving 
scenes

High computational cost and limited 
flexibility

Lizhe Liu et al. (2021) CurveLanes CondLaneNet-L (ResNet-
101)

Detect lanes with complex topography Designed specifically for lane 
detection; unsuitable for other tasks 
like vehicle or sign detection.

Tu Zheng et al. (2022) LLAMAS CLRNET (DLA-34) Detect Lanes and improved localization 
accuracy

Fixed architecture limits flexibility; 
unsuitable for all applications; limited 
generalization.

Cheng Han et al. (2022) BDD100K YOLOPv2 Panoptic Driving Perception High computational cost; struggles to 
detect small objects due to anchor-
based design.

Seokju Lee et al. (2017a) Caltech Lanes 
Washington

VPGNet Detect and classify lanes and road 
markings

Relies heavily on accurate vanishing 
point detection, which is not always 
reliable in practice.

Farzeen Munir et al. (2020) DET LDNet Lane detection and Localization in real-
time performance

Limited ability to handle occlusion; 
struggles in complex urban 
environments.

Dong-Hee Paek and Wijaya (2021) K-Lane LLDN-GFC Lane detection and real-time 
performance

High computational cost; limited 
ability to handle occlusion.

(Mohanapriya et al.; Phat Nguyen Huu and 
Tong Thi Quynh, 2022; Wei Yang et al., 
2020; Xiang Zhang et al., 2018)

Custom Data YoloV3 Lane and obstacle detection Limited sensitivity to small lanes; 
struggles with complex urban 
environments.

Edward Swarlat Dawam (2020) Custom Data YoloV3 Smart city lane detection Limited performance in complex 
environments.

Dai et al. (2024) Custom Data YoloV8 Lane detection using
Hough Transformation

Computational complexity affects real-
time performance.

Cao et al. (2024) Custom Data MSD-YOLO Improved 
YoloV8

Lane detection in crowded urban 
settings

Requires significant training time due 
to model complexity.

Liu et al. (2024) Custom Data DF-Yolo Addresses the challenges posed by 
significant differences in target scales 
within complex scenes.

Generalization ability across datasets 
and driving conditions needs further 
validation.
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algorithm fails to detect an object present in the ground truth, while 
True Negatives, though less relevant in object detection, indicate the 
correct absence of predictions in areas without objects.
Metrics such as precision and recall are derived from these criteria 

and are essential for evaluating object detection accuracy. Precision is 
calculated as shown in Equation (14):

Precision =
TP 

TP + FP
(14)

Similarly, recall is determined using Equation (15):

Recall =
TP 

TP + FN
(15)

The balance between precision and recall is often expressed through 
the F1-score, which combines these two metrics into a single value, 
allowing for a comprehensive evaluation of the algorithm's perfor-
mance. Localization accuracy is another critical metric, assessed using 
IoU. IoU measures the overlap between predicted and ground truth 
bounding boxes, providing an indication of how accurately the algo-
rithm localizes objects. The formula for IoU is provided in Equation (16):

IoU = 
Area of Overlap
Area of Union

(16)

Mean Average Precision further evaluates the algorithm's overall 
performance by calculating the average precision across all classes. It is 
defined as shown in Equation (17):

mAP =
1 
n
∑ 

(Average Precision per class) (17) 

where n represents the total number of classes. Mean Average Precision 
is particularly useful for benchmarking object detection models, as it 
accounts for both precision and recall across all categories in the dataset. 
Additional metrics, including Location Loss, Classification Loss, and 

Confidence Loss, provide further insights into the performance of YOLO. 
Location Loss evaluates the error in bounding box coordinates, while 
Classification Loss assesses the accuracy of predicted category labels for 
each detection. Confidence Loss measures the reliability of the predicted 
bounding boxes, accounting for the probability that each box contains a 
relevant object. Furthermore, Detection Time is critical for real-time 
applications, as it quantifies the time required for the algorithm to 
produce detection results, ensuring that it meets the stringent timing 
requirements of autonomous systems. Computational performance is 
often measured using Billion of Floating-Point Operations Per Second 
(BFLOPS) and Giga Floating Point Operations Per Second (GFLOPS), 
which indicate the number of floating-point operations executed per 
second, providing an understanding of hardware efficiency during al-
gorithm deployment.
Although YOLO demonstrates exceptional real-time performance, it 

faces challenges such as accurately detecting small objects, dis-
tinguishing densely packed objects, and achieving the accuracy of multi-
step object detection methods like Fast R-CNN. By focusing on these 
metrics, researchers can refine YOLO's performance, optimize parame-
ters, and address its limitations. This ensures consistent benchmarking 
across datasets, facilitating meaningful comparisons and driving ad-
vancements in object detection, particularly in applications like auton-
omous driving.

4.3. Evolution and advancements of YOLO versions

Since its inception, YOLO has undergone significant development, 
with each version introducing innovations to enhance its performance, 
speed, and applicability in real-time object detection. Below is a detailed 
description of each YOLO version, emphasizing their distinct features, 
advancements, and limitations.

YOLOv2: It built upon the original model by introducing Darknet-19 
as its backbone, which consisted of 19 convolutional layers. Batch 
normalization was implemented to stabilize training and improve 
convergence. The model used K-means clustering for anchor box gen-
eration, addressing the limitation of single object predictions per grid 
cell present in YOLOv1. YOLOv2 achieved a mAP of 78.60 % with an 
inference rate of 67 frames per second on the Pattern Analysis, Statistical 
Modelling, and Computational Learning Visual Object Classes (Pascal

Table 3
Comparison of YOLO versions: Features and limitations of YOLOv1 to YOLOv11 
for object detection and autonomous vehicle applications.

VERSION FEATURES LIMITATIONS

YOLOv1
(2015) 

- Introduces Darknet framework
and Leaky Rectify Unit 
(LReLU) with linear activation 
function.
- Faster prediction than Fast R-
CNN.

- High localization error.
- Detects a maximum of two 
objects simultaneously.
- Poor prediction accuracy for 
objects with aspect ratios not 
included in the training data.

YOLOv2
(2016) 

- Introduces Darknet-19 as
backbone.
- Incorporates softmax, batch 
normalization, and anchor 
boxes.

- Not effective for small objects.
- High rate of missed detections 
for distant objects.

YOLOv3
(2018)

- Introduces Darknet-53 as 
backbone and independent 
logistic classifiers.
- Incorporates Feature Pyramid 
Network (FPN) and binary 
cross-entropy loss.

- Relatively low efficiency on 
larger-sized objects that run 
within the Darknet system.

YOLOv4
(2020) 

- Uses CSPDarknet-53 as back-
bone, Spatial Pyramid Pooling 
(SPP), and PANet for feature 
aggregation.
- Introduced "Bag of Freebies" 
and "Bag of Specials" for 
optimization.

- Slightly lower detection speed 
compared to YOLOv3.
- High computational 
requirements.

YOLOv5
(2020) 

- Employs Focus structure with
CSPDarknet.
- Auto-learns bounding boxes 
and improves loss 
calculations.

- Lower detection accuracy 
compared to YOLOv4.

YOLOv6
(2021) 

- Incorporates efficient
decoupled head with SIoU 
loss, EfficientRep backbone, 
and Rep-PAN.
- Introduces anchor-free 
training and SimOTA tag 
assignment.

- Lacks pre-trained models for 
images larger than 640 pixels.
- Limited types of pretrained 
models.

YOLOv7
(2022) 

- Introduces de-coupled YOLO
detection heads.
- Improved inference speed and 
model accuracy.

- Poor detection accuracy in 
crowded scenes or for objects 
far from the camera.

YOLOv8
(2023) 

- Employs a unified network
encoding implicit and explicit 
knowledge for reference.
- Suitable for multi-tasking and 
extendable for multi-modal 
learning.

- Poor performance for object 
detection in crowded scenes or 
distant objects.

YOLOv9
(2024) 

- Incorporates anchor-free split
ultralytics heads.
- Improved loss function and 
better regularization 
techniques.

- Extensive use of convolutional 
blocks and C2f blocks 
increases computation and 
parameter count.

YOLOv10
(2024) 

- Introduces Programmable
Gradient Information (PGI) 
and GELAN (Gradient 
Enhanced Lightweight 
Architecture Network) for 
parameter utilization.

- Focuses on lightweight models 
that are under-parameterized, 
risking loss of information 
during the feedforward 
process.

YOLOv11
(2024) 

- Introduces CPSA (Cross-Stage
Partial with Self-Attention) 
and C3f2 to replace C2f blocks.
- Enhanced accuracy for 
detecting small and occluded 
objects.

- Increased computational 
demands and larger model size 
limit deployment on devices 
with constrained resources.
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VOC) dataset (Redmon and Farhadi, 2016). While YOLOv2 performed 
well on large object detection, it struggled with small objects such as 
traffic lights due to limitations in feature extraction.

YOLOv3: It adopted Darknet-53 as its backbone (Redmon and Far-
hadi, 2018), a deeper and more robust architecture compared to 
Darknet-19. It introduced binary cross-entropy loss and an independent 
logistic classifier, replacing the SoftMax activation function used in 
YOLOv2. Additionally, YOLOv3 integrated a Feature Pyramid Network

(FPN) for multi-scale detection, which improved the model's ability to 
detect small and overlapping objects. On the COCO dataset, YOLOv3 
achieved a mAP of 44.3 % and an inference rate of 95.2 frames per 
second (Peiyuan Jiang et al., 2021). Despite its advancements, it 
exhibited relatively low performance on larger objects compared to its 
predecessors.

YOLOv4: It brought substantial improvements with CSPDarknet53 
as its backbone and the addition of Spatial Pyramid Pooling (SPP) and

Table 4
Comparative performance metrics of YOLO versions (YOLOv5 to YOLOv11).

YOLO Version Params FLOPs (G) APval (%) Latency (ms) YOLO Version Params FLOPs (G) APval (%) Latency (ms)

YOLOv5-N 1.9 4.5 28.0 1.7 YOLOv8-N 3.2 8.7 37.3 6.16
YOLOv5-S 7.2 16.5 37.4 2.7 YOLOv8-S 11.2 28.6 44.9 7.07
YOLOv5-M 21.2 49.0 45.4 5.5 YOLOv8-M 25.9 78.9 50.6 9.50
YOLOv5-L 46.5 109.1 49.0 8.8 YOLOv8-L 43.7 165.2 52.9 12.39
YOLOv6-N 4.7 11.4 37.5 1.3 YOLOv8-X 68.2 257.8 53.9 16.86
YOLOv6-S 18.5 45.3 45.0 2.9 YOLOv9-N 2.0 7.7 38.3 6.0
YOLOv6-M 34.9 85.8 50.0 5.7 YOLOv9-S 7.2 26.8 46.8 6.5
YOLOv6-L 59.6 150.7 52.8 10.3 YOLOv9-M 20.1 76.7 51.4 8.0
YOLOv6-3.0-N 4.7 11.4 37.0 2.69 YOLOv9-L 25.5 102.6 53.0 9.0
YOLOv6-3.0-S 18.5 45.3 44.3 3.42 YOLOv9-X 58.1 189.4 55.6 11.5
YOLOv6-3.0-M 1.9 4.5 28.0 1.7 YOLOv10-N 2.3 6.7 39.5 1.84
YOLOv6-3.0-L 59.6 150.7 51.8 9.02 YOLOv10-S 7.2 21.6 46.8 2.49
Gold-YOLO-N 5.6 12.1 39.6 2.92 YOLOv10-M 15.4 59.1 51.3 4.74
Gold-YOLO-S 21.5 46.0 45.4 3.82 YOLOv10-L 24.4 120.3 53.4 7.28
Gold-YOLO-M 41.3 87.5 49.8 6.38 YOLOv10-X 29.5 160.4 54.4 10.70
Gold-YOLO-L 75.1 151.7 51.8 10.65 YOLOv11-N 2.6 6.5 39.5 1.5
YOLOv7-N 6.2 5.8 33.3 1.3 YOLOv11-S 9.4 21.5 47.0 2.5
YOLOv7-S 6.2 13.7 37.4 2.4 YOLOv11-M 20.1 68.0 51.5 4.7
YOLOv7-M 36.9 104.7 51.2 9.0 YOLOv11-L 25.3 86.9 53.4 6.2
YOLOv7-E6E 151.7 843.2 56.8 59.6 YOLOv11-X 56.9 194.9 54.7 11.3

Note: N – Nano for small and lightweight tasks, S – Small with improved accuracy, M – Medium for general-purpose use, L – Large for higher accuracy with higher 
computation, X – Extra-large for maximum accuracy and performance.

Table 5
Performance of YOLO-based algorithms: Overview of modified or customized methods built on baseline YOLO backbones, showcasing their parameters, FLOPs, mAP50 
scores, FPS, and backbone architecture.

YOLO Version Params FLOPs (G) mAP50 (%) FPS Backbone Reference

KP-YOLO – – – – YOLO adapted for QR codes (Hussain and Finelli)
SSDA-YOLO – – – – YOLOv5 Huayi Zhou and Lu (2023) 
HD-YOLO – – – 65 Fisheye optimized YOLO (Wei et al., 2023)
MAD-YOLO 11.9 39.5 53.4 163.9 Improved YOLOv5 Xianchong Xu et al. (2023) 
YOLO-AFC – – 54.25 15.1 YOLOv3 Lee and Hwang (2022)
YOLO-LRDD 19.8 17.4 57.6 86 YOLOv5s with Shuffle-ECANet Wan et al. (2022)
YOLO-Compact 3.49 – 59.7 79 Simplified YOLO (Lu et al.)
YOLOX 25.3 73.8 65.6 155 Adapted YOLOv3 G et al. (2021)
YOLOR 80.0 – 74.30 30 Unified network (Azevedo and Santos)
YOLO-FD – – 75.2 34 Modified YOLOv3 (Silva et al.)
RDD-YOLO N/A – 81.1 57.8 Improved YOLOv5 Chao Zhao et al. (2023)
ORO-YOLO 7.5 – 82.8 38 Improved YOLOX Lian et al. (2023)
YOLO-CIR 35.9 50.4 84.9 30 YOLOv5, ConvNeXt Jinjie Zhou et al. (2023) 
WGB-YOLO 50.9 – 86 34.6 Modified YOLOv3 Yulong Nan et al. (2023) 
TS-YOLO 11.1 99.1 92.0 137 YOLOv4 with additional SPP (Yang et al.)
YOLO-Cigarette – – 95.2 49 Improved YOLOv5 (Ma et al.)
YOLO-BYTE – – 97.3 47 YOLOv7 with ACmix Zhiyang Zheng and Qin (2023)

Fig. 4. Architecture of YOLO Version 1, illustrating the three main components—Backbone, Neck, and Head. The Backbone consists of a series of 24 convolutional 
layers interspersed with max-pooling layers for feature extraction. The Neck contains two fully connected layers for object classification and bounding box proposals, 
while the Head produces the final output, including class probabilities, objectness scores, and bounding box coordinates.
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Path Aggregation Network (PANet) for enhanced feature fusion. It 
introduced innovative techniques like "Bag of Freebies" (data augmen-
tation during training) and "Bag of Specials" (post-processing modules) 
to improve mapping accuracy and inference speed. On the COCO data-
set, YOLOv4 achieved a mAP of 67.5 % with an inference rate of 62 
frames per second. However, its larger model size and computational 
requirements made it less suitable for resource-constrained environ-
ments (Abhishek Sarda and Anupama Bhan; Yingfeng Cai et al., 2021; 
Kangkang Yang, 2022; Rui Wang et al., 2021).

YOLOv5: While not developed by the original YOLO authors, 
YOLOv5 introduced a Focus structure with CSPDarknet as its backbone. 
It emphasized ease of deployment and included auto-learning bounding 
box anchors for better adaptation to datasets. Despite an inference rate 
of 140 frames per second, YOLOv5's mAP of 56.40 % was lower than that 
of YOLOv4, highlighting trade-offs in accuracy for improved speed 
(Joseph Nelson, 2020).

YOLOv6: It introduced architectural enhancements with an Efficient 
Representation (EfficientRep) Backbone and a Re-parameterized Path 
Aggregation Network (Rep-PAN) Neck, optimized for hardware-friendly 
designs. Its decoupled head structure incorporated the Scaled Intersec-
tion over Union (SIoU) loss function, redefining penalty metrics for 
better regression accuracy (L et al., 2022). YOLOv6 achieved a mAP of 
43.1 % and an inference rate of 520 frames per second. However, its 
applicability was limited to images no larger than 640 pixels, making it 
less versatile for larger datasets.

YOLOv7: It featured modular architecture with a Backbone 
(including Bottleneck Convolution (BConv), Efficient Layer Aggregation 
Network (ELAN), and Max Pooling Convolution (MPConv)), a Path 
Aggregation Feature Pyramid Network (PAFPN) as the Neck, and a 
Prediction head for confidence, category, and bounding box generation 
(Wang et al., 2022). This architecture efficiently fused multi-scale fea-
tures, enabling YOLOv7 to achieve a balance between accuracy and 
speed, making it suitable for various object detection tasks.

YOLOv8: The latest addition to the YOLO series of real-time object 
detectors, was released in 2023 by Ultralytics [https://github.com/ultr 
alytics/ultralytics]. It sets a new benchmark for accuracy and speed in 
object detection, building on the advancements of its predecessors. 
YOLOv8 introduces innovative features and optimizations, making it a 
versatile solution for a wide range of object detection tasks across 
various applications. The model incorporates advanced backbone and 
neck architectures, enhancing feature extraction and detection perfor-
mance. Its anchor-free, split Ultralytics head improves accuracy and 
efficiency compared to traditional anchor-based methods. Striking an 
ideal balance between accuracy and speed, YOLOv8 is particularly 
suited for real-time object detection in diverse domains. YOLOv8 offers a 
range of pre-trained models tailored to specific tasks and performance 
requirements, simplifying model selection for users. The series includes 
specialized models for tasks such as object detection, instance segmen-
tation, pose/keypoint detection, and classification. These models are 
individually optimized for high performance and accuracy and are 
compatible with multiple operational modes, including inference, vali-
dation, training, and export. This flexibility makes YOLOv8 adaptable to 
different stages of development and deployment.

YOLOv9: Released in 2024, YOLOv9 incorporated the Information 
Bottleneck Principle and Reversible Functions to improve data retention 
across layers, enhancing gradient stability and convergence (Wang 
et al.). Its novel Programmable Gradient Information (PGI) and Gener-
alized Efficient Layer Aggregation Network (GELAN) optimized 
computational efficiency and accuracy, positioning YOLOv9 as a leading 
choice for real-time object detection.

YOLOv10: The architecture of YOLOv10 is designed to operate 
without NMS, employing consistent dual assignments to significantly 
reduce post-processing time and enhance overall latency. This is ach-
ieved through a lightweight classification head and various architectural 
optimizations that minimize computational redundancy. YOLOv10 
demonstrates improved performance in the detection of small objects,

particularly when employing a lower confidence threshold. The 
consistent dual assignment strategy enhances robust detection capabil-
ities across diverse scenarios. Compared to YOLOv8, YOLOv10 excels in 
post-processing speed due to its innovative NMS-free approach, making 
it highly suitable for real-time applications where latency is a critical 
factor. In terms of detection accuracy, both models perform well; how-
ever, YOLOv10 exhibits a distinct advantage in handling small objects, 
especially with a lower confidence threshold. Furthermore, YOLOv10 
efficiently optimizes its parameters, resulting in a model that is not only 
faster but also more compact than previous versions. YOLOv10 also 
introduces a scalable model framework tailored to specific tasks and 
performance requirements:

• N – Nano for small and lightweight tasks.
• S – Small upgrade of Nano with some extra accuracy.
• M – Medium for general-purpose use.
• L – Large for higher accuracy with higher computation.
• X – Extra-large for maximum accuracy and performance.

These scalable versions allow YOLOv10 to address a wide range of 
applications, from resource-constrained tasks to high-precision, 
computationally intensive operations.

YOLOv11: The latest iteration, integrated features from YOLOv9 and 
YOLOv10 to enhance speed and efficiency. It utilized multi-scale 
detection layers to ensure accurate identification of objects of varying 
sizes. YOLOv11 incorporated optimized non-maximum suppression 
techniques, achieving high detection accuracy while remaining 
computationally lightweight, making it versatile for diverse 
applications.
Each YOLO version represents a step forward in addressing chal-

lenges related to real-time object detection, including speed, accuracy, 
and adaptability. From its early iterations focused on large object 
detection to the latest anchor-free designs for small objects, YOLO has 
evolved to meet the demands of increasingly complex real-world sce-
narios, particularly in autonomous driving.

4.4. YOLO-based algorithms and custom variants

YOLOx: It introduces notable enhancements to the YOLO frame-
work, establishing itself as a high-performance anchor-free detector. 
Leveraging recent advancements such as decoupled heads, an anchor-
free approach, and an advanced label-assignment strategy, YOLOx 
achieves a superior balance between speed and accuracy. It builds upon 
the YOLOv3 architecture, ensuring extensive compatibility and adapt-
ability across various sizes.

YOLO-BYTE: It improves the YOLOv7 backbone by incorporating a 
Self-Attention and Convolution mixed module (ACmix), enhancing 
feature extraction in complex scenarios. To reduce model complexity, it 
employs a lightweight Spatial Pyramid Pooling Cross Stage Partial 
Connections (SPPCSPC-L) module, optimizing performance while 
addressing missed and erroneous detections (Zhiyang Zheng and Qin, 
2023).

RDD-YOLO: It is based on YOLOv5 and designed for fault detection. 
The model features Res2Net, Convolution, Batch Normalization, and 
SiLU (CBS), and Spatial Pyramid Pooling (SPP) blocks as its backbone 
and introduces a Decoupled Feature Pyramid Network (DFPN) as its 
neck. Using Complete Intersection over Union (CIoU) loss, it enhances 
the network's ability to detect and locate defects with precision (Chao 
Zhao et al., 2023).

YOLO-CIR: It combines YOLOv5 with ConvNeXt to optimize infrared 
object detection, effectively addressing challenges in low-visibility en-
vironments (Jinjie Zhou et al., 2023).

WGB-YOLO: It modifies YOLOv3 for multi-classification tasks using 
a wing feature-enhanced CSP backbone and a Bidirectional Feature 
Pyramid Network (Bi-FPN) head network. This architecture achieves 
balanced multiscale feature fusion, enhancing detection accuracy in
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agricultural settings (Yulong Nan et al., 2023).
SSDA-YOLO: It addresses domain adaptation challenges with a semi-

supervised framework built on YOLOv5. By integrating knowledge 
distillation and consistency loss functions, Semi-Supervised Domain 
Adaptation (SSDA)-YOLO effectively adapts to cross-domain object 
detection tasks (Huayi Zhou and Lu, 2023).

MAD-YOLO: It optimizes YOLOv5 for underwater detection. Using 
Visual Object Vision (VOV) DarkNet as its backbone, the model en-
hances multiscale feature extraction to improve detection accuracy in 
aquatic environments (Xianchong Xu et al., 2023).

YOLO-Cigarette: It improves YOLOv5 by integrating a Fine-grained 
Spatial Pyramid Pooling (FSPP) module and a Multi-Spatial Attention 
Mechanism (MSAM), enhancing small-target detection capabilities 
(Xianchong Xu et al., 2023).

ORO-YOLO: It enhances YOLOX for on-road object detection by 
using a reparameterization method and a feature enhancement module. 
This design improves performance in detecting complex road environ-
ments (Lian et al., 2023).

HD-YOLO: It addresses fisheye distortion issues by incorporating a 
radius-aware loss function and a channel attention module, making it 
highly effective for head detection tasks in distorted images (Wei et al., 
2023).

YOLOR: It uses a unified network that encodes implicit and explicit 
knowledge, excelling in multi-task learning. With a mAP of 74.3 and an 
inference rate of 30 FPS on the COCO dataset, it offers fast and reliable 
performance for multi-modal learning tasks.

YOLOX: It is an anchor-free algorithm that uses decoupled detection 
heads. By separating classification and regression tasks, YOLOX en-
hances computation cost efficiency, convergence speed, and model ac-
curacy. On the COCO dataset, it achieves a mAP of 51.20 % and an 
inference rate of 57.8 FPS.

YOLO-LRDD: It modifies YOLOv5s with Shuffle-Efficient Channel 
Attention Network (ECANet) as its backbone and BiFPN for robust 
feature aggregation. This configuration improves the network's ability to 
describe features and enhances reliability (Wan et al., 2022). 

YOLO-AFC: It introduces adaptive frame control to address real-time 
processing challenges in network camera environments. YOLO-AFC 
minimizes service delays while maintaining high precision and ease of 
use (Lee and Hwang, 2022).

YOLO-FD: It modifies YOLOv3 to specialize in face detection, 
achieving real-time detection for faces as small as 16 pixels at 34 FPS 
(Silva et al.).

YOLO-Compact: It is designed for single-category detection, opti-
mizing the YOLO framework for lightweight and efficient applications 
(Lu et al.).

TS-YOLO: It improves YOLOv4 by adding two additional SPP mod-
ules, enhancing accuracy and increasing the number of detected objects 
(Yang et al.).

KP-YOLO: It modifies the YOLO algorithm to detect feature points in 
single-class settings, such as QR code detection (Hussain and Finelli). 

WOG-YOLO: Xu et al. (2023) introduced this model, which in-
tegrates a weighted optimization graph with YOLO. It improves detec-
tion accuracy and speed in complex road environments.

MCS-YOLO: Cao et al. (2023) developed this multiscale detection 
algorithm for recognizing diverse objects in cluttered road environ-
ments. It enhances recognition by leveraging multiscale features. 

YED-YOLO: Bao and Gao (2024) introduced this algorithm, focusing 
on energy-distribution-based improvements to enhance YOLO's detec-
tion accuracy and robustness in autonomous driving systems.

5. Applications and performance analysis of YOLO variants in 
object detection

In this section, we explore the diverse applications of YOLO algo-
rithms in object detection, highlighting their practical utility across 
various domains. A comparative analysis is then conducted to evaluate

the performance of different YOLO variants using two widely recognized 
benchmark datasets: COCO and KITTI. These datasets are extensively 
used for object detection tasks due to their comprehensive annotations 
and relevance to real-world scenarios. The evaluation focuses on key 
performance metrics, including accuracy, precision, and detection time, 
providing a detailed understanding of the capabilities and limitations of 
each YOLO variant.

5.1. Applications of YOLO variants in autonomous driving

Numerous variants of the YOLO algorithm have been developed, 
each with unique features, strengths, and limitations. This study surveys 
and summarizes previous works that leverage YOLO variants for appli-
cations focused on lane detection and autonomous driving. However, 
not all methods, especially those involving lane change manoeuvres, are 
relevant to similar applications. Limited studies specifically address 
YOLO applications for autonomous lane changes and manoeuvres. Some 
research has categorized vision-based lane detection into two-step and 
one-step methods (Jigang Tang and Liu, 2021), while Peiyuan Jiang 
(Peiyuan Jiang et al., 2021) highlighted differences and similarities 
between YOLO versions and other CNNs.
YOLOv3 remains one of the most widely utilized versions in AVs. 

Studies by Phat Nguyen Huu (Phat Nguyen Huu and Tong Thi Quynh, 
2022), Mohanapriya (Mohanapriya et al.), Wei Yang (Wei Yang et al., 
2020), Xiang Zhang (Xiang Zhang et al., 2018), and Zheng (Ji and 
Zheng, 2021) applied YOLOv3 to detect lanes and obstacles with high 
mAP. These works demonstrated improvements in detection accuracy 
and real-time performance by adjusting network layers and detection 
scales, though they often overlooked brightness variation effects on 
detection accuracy. Edward Swarlat Dawam (Edward Swarlat Dawam, 
2020) trained YOLOv3 with over 25,000 images to robustly detect 25 
road surface marking classes, while Mehdi Masmoudi (Mehdi Masmoudi 
et al., 2021) applied YOLOv3 in an end-to-end vehicle-following 
framework to identify leading vehicles and obstacles. Zillur Rahman 
(Zillur Rahman and Ullah, 2020) employed YOLOv3 to detect vehicles 
traveling the wrong way under various weather and lighting conditions. 
YOLOv3 also excels in real-time localization for collision avoidance. 

Its applications include subclass traffic sign detection (M and Ghantous, 
2022; Kahlil Muchtar and Nasaruddin, 2020; Mario Gluhaković et al., 
2020), extreme weather vehicle detection (Udaya Mouni Boppana et al., 
2022), and highway vehicle tracking (Kahlil Muchtar and Nasaruddin, 
2020; William Chin Wei Hung et al., 2022). Liberios Vokorokos (Liberios 
Vokorokos et al., 2020) demonstrated YOLOv3's capacity for limited 
colour detection, suggesting enhancement with histograms and 
advanced image recognition techniques. While YOLOv3 offers superior 
frame processing speed, studies note its limitations in computational 
complexity and processing memory demands (Mehdi Masmoudi et al., 
2019; Deshpande and Herunde, 2020).
YOLOv4 introduced architectural enhancements, making it suitable 

for diverse AV applications. Irvine Valiant Fanthony (Irvine Valiant 
Fanthony et al., 2021) identified Tiny YOLOv4 as highly compatible 
with real-time object detection for electric AVs, while Huibai Wang 
(Huibai Wang, 2020) and Ghantous (M and Ghantous, 2022) employed 
it for traffic light detection and classification, achieving distance esti-
mation but relying on dataset robustness. Ercan Avşar (Ercan Avşar, 
2022) recommended YOLOv4 for detecting, counting, and tracking ve-
hicles in roundabout videos, while Wen Boyuan (Wen Boyuan, 2020) 
applied it to pedestrian detection with favourable results. Donghao Qiao 
(Donghao Qiao, 2020) compared YOLOv4 and Faster R-CNN, finding 
YOLOv4 superior in speed and accuracy (68 fps). Asif Hummam Rais 
(Asif Hummam Rais, 2021) integrated YOLOv4 with Kalman filters for 
vehicle speed estimation in video streams, addressing class distinction 
issues. Dewi et al. (2022) applied SPP to enhance YOLOv4 for feature 
extraction, achieving state-of-the-art mAP and BFLOPS metrics. 
Challenges persist in enhancing YOLO-based autonomous lane 

detection. High computational costs, limited dataset generalization, and
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inference rate complications hinder advancements without sacrificing
accuracy. Phat Nguyen Huu (Phat Nguyen Huu and Tong Thi Quynh, 
2022) suggested exploring semi-supervised learning, meta-learning, and 
neural architecture search to improve detection. While YOLOv3 offers 
robust performance, its complexity necessitates research toward light-
weight, accurate models like YOLOv4. Although some studies claim 
Support Vector Machines (SVMs) outperform YOLO in accuracy, YOLO's 
speed advantage often makes it the preferred choice for AVs (Mehdi 
Masmoudi et al., 2021).
Detection rates improve significantly with YOLOv5, as Teena Sharma 

(Teena Sharma et al., 2022) demonstrated by training it on diverse
datasets for car, traffic light, and pedestrian detection in various weather 
conditions. Studies also revealed that modifying YOLOv5's anchors and
structural elements enabled better detection of larger, blurred, or 
smaller objects without compromising inference time (Yunfan Chen 
et al., 2022; Prithwish Sen and Sahu, 2022; Aduen Benjumea et al., 
2020; Shen Zheng et al., 2021). Wibowo et al. (2023) enhanced YOLO 
for dense urban traffic, focusing on crowded condition detection. 
Chaudhry (2024) introduced SD-YOLO- Adaptive Weighted Dense 
Network (AWDNet), a hybrid approach to tackle adverse weather 
detection challenges, while Ren et al. (2024) developed Dilated Con-
volutional Weighting (DCW)-YOLO with dynamic convolutional 
weighting for diverse road scenarios.
Recent advancements include Özcan et al.'s ( ̈Ozcan et al., 2024)

metaheuristic-optimized YOLO for adverse weather and Li et al.'s (Li 
et al., 2024) YOLO- Adaptive Lightweight Precision Hybrid Architecture 
(ALPHA), emphasizing precision and efficiency for real-time applica-
tions. Khan et al. (2024) applied YOLO to pothole detection, achieving 
practical results for poorly maintained roads. These advancements 
highlight YOLO's versatility and ongoing relevance in addressing AV 
challenges.

5.1.1. Advancements in YOLO-based traffic monitoring systems 
YOLO-based algorithms have emerged as a cornerstone for traffic 

monitoring systems due to their ability to perform real-time object 
detection with high accuracy and efficiency. These algorithms have 
applications spanning various domains of intelligent transportation, 
including vehicle recognition, traffic sign detection, signal optimization, 
and monitoring complex traffic environments. Recent advancements in 
YOLO-based methods have aimed to enhance their performance in 
diverse and challenging scenarios, such as urban mixed traffic, adverse 
weather conditions, and large-scale aerial monitoring.
Imanuel et al. (2024) provide a comprehensive review of YOLO's 

evolution and its implementation across different domains, emphasizing 
its real-time performance, high detection accuracy, and adaptability to 
various applications. Mistry and Degadwala (Mistry and Degadwala) 
proposed a customized YOLO framework tailored to improve multi-type 
vehicle recognition. Their approach yielded significant improvements in 
precision and recall, surpassing standard YOLO models. Similarly, Song 
et al. (2023) introduced Multi-scale Efficient Backbone (MEB)-YOLO, 
optimized for detecting vehicles in complex traffic scenarios by 
addressing occlusion and vehicle overlap, which are common challenges 
in urban environments.
Flores-Calero et al. (2024) systematically reviewed traffic sign 

detection and recognition using YOLO, highlighting the algorithm's 
adaptability to varying lighting and weather conditions. They demon-
strated the potential of advanced pre-processing techniques to detect 
less distinct traffic signs. Wang and Yu (Wang and Yu) enhanced 
YOLOv4's feature extraction capabilities for improved detection in 
challenging visual environments. In intelligent traffic systems, Kalva 
et al. (Kalva et al.) developed a scalable, real-time monitoring system by 
integrating YOLO with deep learning techniques for urban applications. 
Sravanthi et al. (Sravanthi et al.) utilized YOLOv8 to dynamically con-
trol traffic signal durations based on real-time vehicle detection, show-
casing its potential for optimizing traffic flow.
For aerial imagery applications, Ali and Jalal (Ali and Jalal)

employed YOLO for vehicle detection and tracking, integrating centroid 
tracking for continuity in dynamic settings. Zhou et al. (2023) tailored 
YOLO for urban mixed traffic, enhancing its capabilities to detect 
diverse participants like bicycles and pedestrians. Tang et al. (2024) 
introduced YOLO-Fusion, integrating YOLO with IoT frameworks for 
advanced detection in smart transportation systems. This method 
demonstrated enhanced performance in complex traffic environments 
by combining sensor and visual inputs. Varshney et al. (Varshney et al.) 
extended YOLOv8 for long-distance video streaming detection, 
providing scalable solutions for intelligent traffic monitoring. 
Challenges in YOLO-based traffic monitoring primarily arise from 

environmental conditions, computational demands, and dataset limita-
tions. Factors like adverse weather, occlusions, and overlapping objects 
impact detection accuracy, while high computational requirements 
hinder real-time performance on resource-constrained devices. Limited 
datasets restrict generalization across varied traffic scenarios, affecting 
performance in settings such as rural roads and highways. Addressing 
diverse traffic participants like cyclists and pedestrians in mixed traffic 
remains an ongoing challenge. Moreover, adversarial vulnerabilities and 
integration issues with IoT frameworks underscore the need for robust, 
scalable, and secure solutions to advance YOLO-based traffic monitoring 
systems.

5.1.2. Addressing adversarial vulnerabilities in YOLO-based autonomous 
vehicle systems 
Adversarial perturbations present a significant challenge to the 

reliability and accuracy of YOLO-based object detection systems in 
autonomous vehicles. These subtle, often imperceptible modifications 
can deceive detection models, causing errors in object recognition and 
jeopardizing decision-making processes. This section examines the vul-
nerabilities of YOLO detectors to adversarial attacks and reviews the 
defensive strategies developed to mitigate these risks. 
Choi and Tian (Im Choi and Tian) highlighted the susceptibility of 

YOLO-based systems to adversarial attacks, including both digital and 
physical adversarial examples. Their analysis demonstrated that such 
attacks could lead to misclassification or complete evasion of objects, 
undermining the reliability of perception systems in autonomous vehi-
cles. Similarly, Wu (2024) explored practical adversarial attack strate-
gies, emphasizing the challenges of detecting and mitigating such 
attacks in real-world scenarios. 
Jia et al. (2022) conducted experiments on traffic sign recognition 

systems to demonstrate how physical adversarial examples, such as 
stickers or camouflage, could manipulate YOLO-based models. These 
perturbations were effective under varying lighting and environmental 
conditions, underscoring the need for robust defence mechanisms. Jiang 
et al. (2023) extended this research by evaluating the physical-world 
robustness of YOLO detectors for vehicle detection. They introduced 
simulation environments to test adversarial examples and proposed 
enhancements to YOLO's training pipeline to improve robustness. 
Defensive strategies against adversarial perturbations have also been 

explored. Liang et al. (2024) investigated adversarial patch attacks and 
proposed mechanisms such as adversarial training and patch-based 
shielding techniques. Their findings demonstrated that integrating 
these defences significantly improved YOLO's reliability in dynamic 
driving environments. Li et al. (Li et al.) proposed a simulation-based 
framework for detecting object-evasion attacks on YOLO detectors. By 
integrating adversarial detection mechanisms into the YOLO pipeline, 
their method effectively identified and mitigated evasive adversarial 
objects, improving detection accuracy in autonomous driving contexts. 
Despite advancements in addressing adversarial vulnerabilities, 

challenges remain. YOLO-based algorithms must balance computational 
efficiency with robustness against adversarial attacks. Future research 
should focus on integrating adversarial training, simulation-based de-
fences, and real-world validations to enhance YOLO models' ability to 
operate reliably in adversarial environments. Additionally, efforts 
should be directed toward improving the detection of physical
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adversarial examples and developing proactive defence mechanisms 
that can adapt to evolving threats.
By addressing these challenges, YOLO-based systems can be made 

more resilient, ensuring the safety and reliability of autonomous vehicle 
operations in complex and adversarial scenarios.

5.1.3. YOLO-based vehicle identification, speed estimation and tracking 
algorithm for autonomous vehicles
Vehicle identification, speed estimation, and tracking are pivotal 

components in the development of autonomous vehicle systems, 
ensuring safe navigation and compliance with traffic regulations. YOLO-
based algorithms have emerged as a powerful tool in these applications 
due to their real-time object detection and tracking capabilities. This 
section reviews recent advancements in YOLO-based techniques for 
these tasks.
YOLO's high accuracy and speed have significantly advanced vehicle 

identification. Farid et al. (2023) proposed a YOLO-based detection 
method optimized for unconstrained environments, demonstrating the 
algorithm's ability to accurately detect vehicles in diverse scenarios. 
Similarly, Pemila et al. (2024) combined YOLO with machine learning 
classifiers to achieve real-time vehicle classification across extensive 
datasets, addressing the complexities of mixed traffic. Rani et al. (2024) 
introduced Lightweight Vision (LV)-YOLO, a system that integrates 
vehicle detection with logistic speed estimation and counting, show-
casing YOLO's versatility in multi-task scenarios.
Accurate speed estimation is essential for collision avoidance and 

traffic management. Do et al. (Do et al.) presented an algorithm for 
estimating the speed of fast-moving vehicles in intelligent transportation 
systems, achieving high accuracy by integrating YOLO with advanced 
data processing techniques. Cvijetić et al. (Cvijetić et al.) combined 
YOLO with a 1D convolutional neural network (1D-CNN) for vehicle 
speed estimation, demonstrating its efficacy in real-time applications. 
Lin et al. (2021) developed a system using virtual detection zones and 
YOLO to simultaneously count, classify, and estimate vehicle speeds, 
underlining its potential in urban traffic monitoring.
YOLO-based algorithms have shown considerable promise in vehicle 

tracking applications. Samsuri and Nazri (Samsuri and Mohd Nazri) 
developed a deep learning-based visual tracking system for traffic flow 
monitoring, highlighting YOLO's effectiveness in real-time surveillance. 
Soma et al. (Soma et al.) employed YOLOv8 for real-time vehicle 
tracking and speed estimation, emphasizing the efficiency of advanced 
YOLO iterations in handling dynamic traffic environments. Yass and 
Faris (2023) reviewed YOLO-based techniques for tracking vehicles and 
addressing wrong-way driving scenarios, demonstrating YOLO's critical 
role in enhancing road safety through reliable tracking systems. 
Several studies have explored multi-modal approaches that integrate 

vehicle tracking and speed estimation. Prajwal et al. (Prajwal and 
Kumar) proposed a multi-vehicle tracking model using deep learning, 
demonstrating scalability across multiple vehicle types and speeds. 
Prathap et al. (Prathap et al.) highlighted advancements in tracking 
systems by combining YOLO for object detection with additional layers 
for speed prediction, illustrating the adaptability of YOLO frameworks 
in complex traffic scenarios.
Despite the successes of YOLO-based algorithms, challenges persist. 

Chen et al. (2021) observed that variations in video resolution and UAV 
altitude affect tracking accuracy, necessitating adaptive models. Simi-
larly, Vela et al. (Vela et al.) emphasized the importance of lightweight 
models to ensure computational efficiency in urban scenarios. Future 
research must focus on improving model robustness, integrating 
multi-modal data, and optimizing YOLO frameworks to operate effec-
tively in resource-constrained environments. Addressing these chal-
lenges will further enhance YOLO's applications in vehicle 
identification, speed estimation, and tracking, solidifying its role in 
autonomous vehicle systems.

5.2. Case studies: YOLO variants in object detection

Two widely used datasets for evaluating YOLO algorithms are COCO 
and KITTI. The COCO dataset is a large-scale benchmark designed for 
object detection, segmentation, and captioning. It includes a diverse 
collection of images with detailed object annotations, making it ideal for 
training and evaluating object detection models (Kim, 2019). In 
contrast, the KITTI dataset focuses on autonomous driving and computer 
vision tasks. It features high-resolution images annotated for object 
detection and tracking, making it particularly suitable for applications 
related to self-driving vehicles (Geiger and Lenz, 2013).
The performance of YOLO algorithms depends significantly on the 

datasets used for evaluation, as there is no single unified dataset for 
benchmarking. As a result, algorithm performance must be assessed in 
the context of the dataset employed in each study.
This section examines six YOLO models applied to object detection 

tasks using the COCO and KITTI datasets. Both datasets are popular 
benchmarks in this domain, enabling researchers to evaluate and 
compare algorithm performance.
For the COCO dataset, as illustrated in Fig. 5, YOLOv11 demonstrates 

the highest accuracy and precision, followed closely by YOLOv10 and 
YOLOv9. These models show considerable improvements in both met-
rics compared to earlier YOLO iterations, reflecting advancements in 
feature extraction and detection algorithms. Similarly, on the KITTI 
dataset, as shown in Fig. 6, YOLOv11 again achieves superior perfor-
mance, with YOLOv10 and YOLOv9 maintaining their strong perfor-
mance in accuracy and precision.
While YOLOv11, YOLOv10, and YOLOv9 lead in terms of detection 

performance, other YOLO versions also perform acceptably across 
various object detection tasks. Incremental improvements in precision 
and accuracy are observed in newer YOLO variants, underlining the 
ongoing enhancements in the algorithm's architecture and capabilities.

6. Challenges in advancing YOLO for lane detection and 
manoeuvres in AVs

Advancing YOLO's application for lane change detection and ma-
noeuvres in AVs requires addressing several pressing challenges. Despite 
the significant progress in YOLO-based methodologies, there are areas 
that demand focused research to enhance their adaptability, accuracy, 
and robustness. The following challenges outline the key areas for 
improvement:

1. Adaptability to Diverse Driving Conditions: YOLO algorithms, 
while effective, need further optimization to handle a wide range of 
variabilities in vehicle environments, including irregular lane 
shapes, inconsistent line quality, and interactions with other road 
users. A comprehensive comparative study of YOLO variants, such as 
YOLOv4, YOLOv6, and YOLOv7, under varying driving conditions is 
essential. Research should include tuning hyperparameters to iden-
tify and manage extreme cases. Hybridizing architectures of these 
YOLO versions can improve detection and classification in dynamic 
AV environments, particularly for different traffic and road 
conditions.

2. Enhancing Lane Detection Accuracy: Improving YOLO-based lane 
detection algorithms in complex scenarios remains a priority. Ac-
curate detection requires robust handling of irregular spatial re-
lationships and occlusions. Enhancements in training methodologies, 
such as employing larger datasets of labelled images, are necessary. 
Transitioning to advanced YOLO versions like YOLOv6 and YOLOv7, 
rather than relying on older models like YOLOv3, could yield better 
performance. Additionally, implementing a scoring metric to detect 
potential misclassifications in AV perception algorithms can help 
ensure error-free decision-making in critical real-world scenarios.

3. Optimization of YOLOv8 for Lane Detection: Focused research on 
the YOLOv8 architecture is crucial to further refine its algorithm for
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enhanced lane detection. This includes optimizing key parameters 
and training procedures to improve its accuracy and efficiency. By 
fine-tuning these aspects, researchers can push YOLOv8's perfor-
mance boundaries, particularly in addressing the unique challenges 
posed by AV lane detection tasks. 

4. Establishment of Universally Acceptable Datasets: The lack of 
globally standardized datasets tailored to YOLO algorithm training 
for diverse road environments is a critical challenge. These datasets 
must encompass variations in road users, lane structures, and traffic 
signs across different geographical regions. Creating such universal 
datasets will enable the development of robust, adaptable algorithms 
that can be integrated seamlessly by AV manufacturers worldwide. 
Standardized datasets will not only improve YOLO's detection ca-
pabilities but also ensure consistency and reliability in global AV 
applications.

Addressing these challenges will significantly enhance YOLO's effi-
cacy in autonomous vehicle applications, paving the way for safer and 
more reliable AV systems in real-world environments.

7. Discussion

This section critically examines the findings presented throughout 
the paper, offering a synthesis that moves beyond descriptive accounts 
of YOLO-based algorithms to a deeper evaluative perspective. By 
comparing different YOLO variants, analysing their performance across 
multiple datasets, and identifying persistent limitations, we contextu-
alize their capabilities within the broader landscape of autonomous 
vehicle (AV) perception and outline strategic directions for advancing 
this technology.

7.1. Critical analysis of YOLO's role in AV lane detection and manoeuvres

The YOLO family of algorithms has demonstrated substantial

progress in real-time object detection, enabling autonomous vehicles to 
identify and classify vehicles, pedestrians, traffic signs, and lane markers 
with increasing accuracy and speed (Hrag-Harouth Jebamikyous, 2022; 
Ercan Avşar, 2022; Harisankar.R; Mehdi Masmoudi et al., 2019; Jigang 
Tang and Liu, 2021; Peiyuan Jiang et al., 2021). Compared to tradi-
tional, multi-stage detectors like R-CNN variants (Fast/Faster R-CNN 
and Mask R-CNN), YOLO's single-stage approach reduces latency and 
computational overhead, making it particularly appealing for AV ap-
plications where prompt decision-making is crucial. However, despite 
these gains, current YOLO algorithms still face difficulty when con-
fronted with challenging real-world conditions. For instance, detecting 
subtle or degraded lane markings, coping with variable lighting and 
weather conditions, and handling occlusions or highly cluttered scenes 
remain non-trivial (Mohanapriya et al.; Cheng Han et al., 2022; Mahaur 
and Mishra, 2023; Phat Nguyen Huu and Tong Thi Quynh, 2022; Wei 
Yang et al., 2020; Xiang Zhang et al., 2018).
In addition, while newer YOLO versions (e.g., YOLOv8, YOLOv9, 

YOLOv10, and YOLOv11) and customized variants (e.g., MAD-YOLO, 
RDD-YOLO, YOLO-CIR) have pushed the frontiers of speed and accu-
racy, these improvements often come at the expense of increased model 
complexity or remain narrowly focused on specific tasks (Jinjie Zhou 
et al., 2023; Mahaur and Mishra, 2023; Xianchong Xu et al., 2023). Thus, 
the existing literature collectively illustrates a scenario where incre-
mental advancements in architecture and training protocols yield better 
performance but do not fully address fundamental challenges that 
hinder robust, scalable AV deployment.

7.2. Identified gaps and limitations in existing research

A notable gap is the lack of universal, representative datasets 
covering the full spectrum of road conditions, infrastructure types, and 
cultural driving practices. Many studies benchmarked their YOLO 
models on standard datasets such as COCO and KITTI (Peiyuan Jiang 
et al., 2021; Kim, 2019; Geiger and Lenz, 2013), which, although widely 
accepted, may not capture the diversity of real-world roadway envi-
ronments. This limitation constrains model generalizability and may 
cause YOLO-based AV systems to underperform when introduced to 
unfamiliar geographic regions or unusual traffic scenarios.
Moreover, current YOLO models struggle with adversarial robust-

ness. Several works have demonstrated the susceptibility of YOLO-based 
detectors to adversarial perturbations—subtle modifications to the input 
images that lead to misclassifications or missed detections (Im Choi and 
Tian; Jia et al., 2022; Wu, 2024; Jiang et al., 2023; Li et al.; Liang et al., 
2024). Such vulnerabilities pose serious safety concerns for AVs and 
emphasize the need for more secure and resilient model architectures 
and training techniques.
Another key limitation is the balancing act between detection ac-

curacy and computational efficiency. While YOLO excels in speed, 
pushing the boundaries of accuracy—especially for small objects, 
distant road signs, or intricate lane configurations—often demands 
additional layers, complex backbones, or more computational power. 
Such trade-offs can impede deployment on resource-constrained plat-
forms and limit the algorithm's scalability in large-scale, real-time AV 
fleets (Mehdi Masmoudi et al., 2019, 2021; Khan et al., 2024; Zillur 
Rahman and Ullah, 2020).

7.3. Comparisons and key findings

Comparative analyses of YOLO variants show that while incremental 
architectural improvements (e.g., CSPDarknet backbones in YOLOv4, 
anchor-free heads in YOLOv8, or gradient enhancements in YOLOv10 
and YOLOv11) lead to measurable gains, no single version consistently 
outperforms all others across every metric and scenario (Mehdi Mas-
moudi et al., 2019; Abhishek Sarda and Anupama Bhan; Yingfeng Cai 
et al., 2021; Rui Wang et al., 2021). For example, some YOLO versions 
excel in ideal lighting conditions yet falter under extreme weather, while

Fig. 5. Comparison of accuracy and precision across different YOLO versions 
evaluated on the COCO dataset.

Fig. 6. Comparison of accuracy and precision across different YOLO versions 
evaluated on the KITTI dataset.
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others are optimized for detecting certain object classes at the expense of 
general-purpose flexibility.
These comparisons highlight the need for adaptive and context-

aware detection strategies. It is evident that YOLO-based algorithms 
must be more than just universally fast—they must be adaptable, robust, 
and capable of maintaining performance standards across a wide range 
of real-world challenges.

7.4. Practical and theoretical implications

Practically, the findings suggest that while YOLO can form the 
backbone of AV perception systems, it remains insufficient as a stand-
alone solution. AV manufacturers and researchers need to consider 
sensor fusion (e.g., incorporating LiDAR, radar, or thermal imaging) and 
tailor training protocols to the vehicle's intended environment. This may 
involve domain adaptation techniques, data augmentation strategies, 
and extensive real-world testing regimes to ensure consistency and 
safety in operation (Khayyam et al., 2020; Milani et al., 2020; Al-Saadi 
et al., 2022; Mahaur and Mishra, 2023).
From a theoretical perspective, YOLO's evolution underscores the 

importance of balancing model complexity with computational effi-
ciency and generalization capability. The trade-offs observed suggest 
that further research is needed to develop unified frameworks that 
seamlessly integrate multi-modal input streams and advanced loss 
functions while maintaining real-time performance. Additionally, 
adversarial training and the integration of simulation-based defences 
will be crucial in fortifying YOLO models against emerging security 
threats.

7.5. Professional opinions and suggested directions for improvement

Based on the evidence and analyses reviewed, several pathways 
emerge for improving YOLO-based solutions in AV perception:

1. Enhanced Training Paradigms: Adopting meta-learning and neural 
architecture search can automate the discovery of optimal hyper-
parameters, loss functions, and model architectures. Semi-supervised 
learning methods may also help in leveraging large volumes of 
unlabelled, real-world driving data to improve robustness 
(Mondschein et al., 2006; Edward Swarlat Dawam, 2020; Yu et al., 
2018).

2. Universal Datasets and Benchmarking Standards: There is a 
pressing need for globally representative, standardized datasets that 
encompass varying lane types, road conditions, weather scenarios, 
and cultural norms. Such datasets would enable more meaningful 
cross-comparisons and reliable generalization of YOLO-based models 
(Mohanapriya et al.; Mahaur and Mishra, 2023; Phat Nguyen Huu 
and Tong Thi Quynh, 2022; Wei Yang et al., 2020; Xiang Zhang et al., 
2018).

3. Multi-Modal Sensor Fusion: Integrating camera-based YOLO 
detection with complementary sensors can improve detection reli-
ability under adverse conditions. Combining LiDAR or radar with 
YOLO can mitigate vision-only weaknesses, enhancing the model's 
accuracy in poor visibility or high-occlusion environments (Song 
et al., 2024; Wang et al., 2024a; Appiah and Mensah, 2024; Silva 
et al.).

4. Adversarial Resilience and Safety-Centric Design: Strengthening 
YOLO's adversarial resilience through adversarial training, robust 
simulation platforms, and real-time anomaly detection is essential. 
Future research could focus on designing specialized YOLO variants 
or pre-processing modules that detect and neutralize adversarial 
perturbations.

5. Architectural Hybridization and Efficiency Optimization: 
Incorporating promising features from YOLOv4, YOLOv7, and 
YOLOv8 (e.g., anchor-free heads, refined attention mechanisms) into 
hybrid architectures could yield models that strike an improved

balance between speed, accuracy, and robustness. Lightweight 
optimization techniques and hardware acceleration strategies should 
also be explored to accommodate diverse AV platforms.

8. Conclusion

This comprehensive review was conducted following a systematic 
and transparent methodology, encompassing a broad literature search 
across reputable databases, well-defined inclusion and exclusion 
criteria, and the application of a conceptual framework to categorize, 
compare, and critically assess the performance of YOLO algorithms in 
autonomous vehicle (AV) contexts. By integrating both foundational and 
recent studies, this approach ensured a balanced and in-depth exami-
nation of YOLO's evolution, capabilities, and shortcomings. Our analysis 
revealed that YOLO algorithms excel in providing real-time object 
detection and lane identification, offering substantial promise for 
improving AV lane-change manoeuvres and overall navigation. How-
ever, persistent gaps hinder the full realization of YOLO's potential. 
These include difficulty in accurately detecting subtle or irregular lane 
markings, limited robustness to adverse environmental factors (e.g., 
variable lighting, occlusions, and adverse weather), and vulnerabilities 
to adversarial attacks. In addition, the lack of universally representative 
datasets restricts YOLO's scalability and generalizability across diverse 
geographical and traffic conditions. Furthermore, issues such as 
balancing accuracy with computational efficiency remain pressing, 
especially for resource-constrained AV systems. By synthesizing these 
findings, this paper highlights YOLO's current limitations and the 
attendant need for strategic improvements. The contributions of this 
review extend beyond cataloging existing algorithms and their perfor-
mance. We have provided a comparative evaluation, identified critical 
challenges, and proposed avenues for enhancement. Such recommen-
dations include refining YOLO's architectures—potentially by 
leveraging and hybridizing YOLOv4, YOLOv7, and YOLOv8—to better 
handle complex and dynamic road environments. Introducing advanced 
training methodologies, sensor fusion, and hyperparameter tuning, as 
well as developing global, standardized datasets, can significantly 
bolster detection accuracy and robustness. Implementing adversarial 
training and other defensive strategies will further strengthen YOLO's 
resilience against attacks. In essence, this comprehensive review not 
only spotlights the strengths and limitations of YOLO algorithms but also 
provides actionable guidance for future research and practical deploy-
ment. By addressing the highlighted gaps and refining YOLO's capabil-
ities, the vision of safe, efficient, and widely scalable autonomous 
navigation can move closer to reality, making YOLO a cornerstone 
technology in next-generation AV systems.
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