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ABSTRACT

Ensuring the safety and efficiency of Autonomous Vehicles (AVs) necessitates highly accurate perception,
especially for lane detection and lane-change manoeuvres. Among object detection frameworks, “You Only Look
Once” (YOLO) algorithms have emerged as prominent contenders due to their rapid inference and commendable
accuracy. However, the broad spectrum of YOLO variants and their applications in complex, real-world envi-
ronments remain insufficiently mapped, necessitating a more integrative and critical perspective than what is
typically offered by surveys. This comprehensive review synthesizes theoretical foundations, architectural in-
novations, and empirical evaluations of YOLO-based algorithms in AV-related tasks. It not only highlights key
findings—such as the notable gains in real-time detection and adaptability to a range of driving conditions—but
also explicitly identifies persistent gaps and limitations. These include difficulties in detecting subtle or degraded
lane markings, handling unpredictable environmental factors like adverse weather and varied lighting, miti-
gating adversarial perturbations, and scaling effectively across diverse datasets and geographic regions. By
critically examining these vulnerabilities, we illuminate the opportunities for refining YOLO's training para-
digms, optimizing model architectures, incorporating sensor fusion, and fostering universally applicable datasets.
The implications of addressing these gaps extend beyond mere technical refinements. Proactively tackling
YOLO's current challenges can expedite the realization of safer, more robust, and globally adaptable AV navi-
gation systems. In doing so, this review provides clear, actionable insights for researchers, engineers, and pol-
icymakers, guiding them toward strategic innovations that will strengthen AV perception and contribute to more
reliable, future-ready transportation solutions.

1. Introduction

navigate roads safely with minimal or no human intervention. This
technology offers several benefits, including reduced crash frequency

Road safety is a critical global priority, as it not only saves lives and
prevents injuries but also minimizes property damage, ensures smooth
traffic flow, and reduces the social and economic costs associated with
accidents (Khayyam et al., 2020). Recent technological advancements,
particularly in self-driving cars or Autonomous Vehicles (AVs), have
sparked significant interest as a potential solution to enhance road safety
and revolutionize transportation systems (Fayyazi et al., 2023a). AVs are
equipped to analyze their surroundings and make informed decisions to
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and improved traffic efficiency (Kum Fai Yuen et al., 2020; Mola et al.,
2022) listed in Table 5.

However, despite these advantages, substantial challenges remain.
According to the World Health Organization (WHO), 1.35 million peo-
ple lose their lives annually in vehicle collisions, with human error being
the leading cause (Klaver, 2020). Contributing factors include excessive
speeding, intoxicated driving, distractions such as mobile phone usage,
and failure to use safety equipment like seat belts and helmets
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(Ming-Yuan Yu and Johnson-Roberson, 2019). AV technology holds the
promise of mitigating such human-induced risks. Yet, challenges such as
poor road conditions, complex topographies (e.g., sharp bends), severe
weather, traffic congestion, accident liability concerns, and signal loss
due to radar interference hinder widespread adoption. Among these,
ensuring accurate and safe lane changes, a critical AV functionality,
remains a significant hurdle. Failures in lane change systems have
already resulted in severe accidents. For instance, in 2022, two fatal
incidents involving Tesla's Autopilot system were attributed to failures
in vision systems and object recognition (Greaser, 2022; Lambert, 2022).
As the prevalence of AVs increases—projected to constitute
three-quarters of all vehicles by 2040 (Newcomb, 2012)—addressing
these challenges is imperative.

Lane changes, a core AV functionality, involve moving between lanes
safely while avoiding collisions. This process requires effective lane
detection, keeping within lane boundaries, and understanding lane
characteristics. Despite advances in algorithms for lane keeping and
detection, challenges persist, particularly in reliably identifying lanes
under varying environmental conditions (Jian and Shi, 2020; Marzbani
et al., 2019; Phan et al., 2020a; Milani et al., 2020; Zadeh et al., 2024).
Robust object recognition systems are essential for maneuver planning,
enabling AVs to detect stationary and moving objects, pedestrians, road
signs, and lane markings (Hrag-Harouth Jebamikyous, 2022). Failures
in object detection may lead to unsafe driving behavior, underscoring
the need for continuous improvement in detection algorithms
(Hrag-Harouth Jebamikyous, 2022; Ercan Avsar, 2022; Harisankar.R;
Mehdi Masmoudi et al., 2019).

Numerous algorithms have been developed for object and lane
detection, including Vanishing Point Guided Network (VPGNet) (L et al.,
2017), Mask Region-Based Convolutional Neural Network (Mask RCNN)
(H et al., 2018), Spatial Convolution Neural Network (SCNN) (P et al.,
2017), Multi-Line Detection Conditional Random Fields model
(MLD-CRF) (Hur et al., 2013), Boundary detection Network (RBNet)
(Chen and Chen), LineNet (Dun Liang et al., 2020), and You Only Look
Once (YOLO) (Jigang Tang and Liu, 2021). Among these, YOLO has
emerged as a popular choice due to its exceptional speed and accuracy in
real-time applications, particularly in AV systems (Peiyuan Jiang et al.,
2021). Unlike traditional methods that rely on multi-stage pipelines,
YOLO simplifies object detection by framing it as a single regression
problem. This enables YOLO to predict bounding boxes and class
probabilities in a single evaluation, achieving remarkable detection
accuracy and speed.

Other networks, such as VPGNet and SCNN, support multitask
detection, handling road classification, boundary detection, and vehicle
recognition. However, multitask models often face performance trade-
offs due to the added computational complexity (Dun Liang et al.,
2020). YOLO's ability to process images in real-time, coupled with its
streamlined architecture, has made it a leading choice for AV applica-
tions (Peiyuan Jiang et al., 2021).

While significant progress has been made in detection and identifi-
cation techniques, a notable gap remains in the objective comparison of
different methodologies, particularly their robustness across real-world
scenarios. Systematic evaluations and benchmarking of these techniques
are needed to understand their strengths and limitations comprehen-
sively. Such analyses will guide the development of more reliable
detection methodologies tailored for AV applications.

This paper provides a comprehensive and critical examination of
object detection algorithms and lane-change indices in the context of
autonomous driving, placing special emphasis on the YOLO family of
algorithms. By reviewing and synthesizing both theoretical frameworks
and empirical performance outcomes—illustrated through comparisons
on benchmark datasets like Karlsruhe Institute of Technology and
Toyota Technological Institute (KITTI) and Common Objects in Context
(COCO) - the study delineates YOLO's current strengths and pinpoint
where its capabilities fall short. These identified gaps include challenges
in reliably detecting subtle lane boundaries, adapting to varying
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environmental conditions, mitigating adversarial influences, and
ensuring generalizability across diverse traffic scenarios. Beyond high-
lighting these issues, the paper discusses their broader implications for
AV safety, efficiency, and scalability. It also proposes avenues for future
work aimed at addressing the identified shortcomings. These sugges-
tions, grounded in the observed limitations, may involve refining YOLO
architectures to better handle complex roadway conditions, improving
training and evaluation protocols to enhance robustness, or encouraging
the development of standardized, representative datasets. By doing so,
the paper contributes actionable insights that can guide subsequent
research and development efforts toward more effective, reliable, and
adaptable YOLO-based solutions for autonomous vehicles.

This paper is structured as follows: Section 2 describes the mathe-
matical modeling and indices for lane changes and object detection.
Section 3 reviews existing lane detection models. Section 4 provides a
detailed discussion of the YOLO algorithm and its variants. Section 5
evaluates the applications and performance of YOLO variants. Section 6
highlights research challenges and future directions. Finally, Section 7
concludes the paper with key findings and recommendations.

1.1. Methodology

To ensure that this comprehensive review provides a thorough, un-
biased, and methodologically sound analysis of YOLO algorithms in the
context of lane and object detection for autonomous vehicles (AVs), a
systematic search and selection process was employed. This process was
designed to identify relevant literature spanning foundational theoret-
ical contributions through to the latest advancements, ensuring both
historical depth and contemporary relevance.

Search Strategy: The literature search was conducted across mul-
tiple reputable databases known for their coverage of computer vision,
robotics, and transportation research, including IEEE Xplore, Spring-
erLink, ScienceDirect, and arXiv. The following keywords and Boolean
combinations were used to ensure comprehensiveness and precision:
“YOLO object detection,” “autonomous vehicles,” “lane detection,”
“deep learning in transportation,” and “YOLO applications.” These terms
were chosen to capture the intersection of YOLO-based methodologies
with AV-specific tasks, ensuring that works addressing either general
YOLO improvements, specialized variants, or direct AV-related de-
ployments were considered. To encompass both established founda-
tional studies and recent innovations, the search timeframe ranged from
2006—capturing early influences on modern computer vision techni-
ques—to 2024. This interval ensured the inclusion of seminal works that
have informed current YOLO architectures, as well as the latest research
reflecting state-of-the-art solutions and ongoing challenges in AV
applications.

Selection Criteria: The initial screening involved reviewing titles,
abstracts, and keywords to eliminate sources not directly relevant to
YOLO algorithms in the AV context. Subsequently, a full-text review was
performed on the remaining papers.

Inclusion Criteria:

Studies that explicitly involve YOLO-based algorithms (original or
variants) applied to lane detection, object recognition, or related
perception tasks in AV environments.

Works presenting empirical results (e.g., mean Average Precision
[mAP], Frames Per Second [FPS], or accuracy metrics), comparative
analyses, or detailed technical insights into YOLO's adaptation for AV
scenarios.

Peer-reviewed journal articles, conference proceedings, and repu-
table preprints in English, ensuring both academic rigor and
accessibility.

Exclusion Criteria:
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e Publications lacking empirical validation, technical detail, or direct
relevance to YOLO and AV perception.

e Non-English sources or duplicates identified across multiple
databases.

e Opinion articles, editorials, or short commentaries without meth-
odological depth.

Through this filtration process, the focus remained on high-quality,
substantively relevant sources. Table 1 illustrates how the collected
literature was categorized according to specific application domains (e.
g., lane detection, traffic monitoring, vehicle tracking), further ensuring
a structured and contextually relevant data set.

Framework for Analysis: A conceptual framework guided the
synthesis of selected studies to ensure that the review transcended a

Table 1
Categorization of research studies based on keywords and references related to
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mere cataloging of methods:

1. Categorization by Domain and Task: Studies were grouped by their
primary AV-related application (e.g., lane detection, object identi-
fication, adversarial robustness), enabling targeted comparative
analysis of YOLO's performance across diverse yet thematically
linked contexts.

2. Performance and Benchmarking: The analysis recorded key perfor-
mance metrics and datasets commonly used in YOLO evaluations (e.
g., KITTI, COCO). By comparing various YOLO iterations within
consistent benchmarks, the review delineates improvements,
persistent challenges, and context-specific strengths or weaknesses.

3. Architectural and Methodological Evolution: YOLO versions and
custom variants were examined to identify patterns in architectural

YOLO applications in autonomous vehicles.

GROUPING KEYWORDS REFERENCES RETURNED
Object Detection for Autonomous Driving YOLO + Object Detection + (Abhishek Sarda and Anupama Bhan), (Al-Saadi et al., 2022), (Mohanapriya et al.), (K and
using YOLO Autonomous Driving Nivetha), (Yingfeng Cai et al., 2021), (Yunfan Chen et al., 2022), (Zaghari et al., 2021), (
Donghao Qiao, 2020), (Prithwish Sen and Sahu, 2022), (Jiwoong Choi et al.), (Aduen
Benjumea et al., 2020), (Cheng Han et al., 2022), (Shen et al., 2023), (Jing J et al., 2020), (
Jinjie Zhou et al., 2023), (Xu et al., 2023), (Cao et al., 2023), (Wibowo et al., 2023), (Diwan
etal., 2023), (Chaudhry, 2024), (Ren et al., 2024), (Ozcanetal., 2024), (Li et al., 2024), (Khan
et al., 2024), (Bao and Gao, 2024)
YOLO-based Traffic Monitoring YOLO + Traffic Monitoring (Al-ganess et al., 2021), (Dewi et al., 2022), (Mistry and Degadwala), (Imanuel et al., 2024), (
Flores-Calero et al., 2024), (Tang et al., 2024), (Kalva et al.), (Song et al., 2023), (Ali and
Jalal), (Wang and Yu), (Sravanthi et al.), (Zhou et al., 2023), (Varshney et al.)
Energy Management for Autonomous Autonomous Vehicles + Energy (Fayyazi et al., 2023b), (Phan et al., 2020b), (Zadeh et al., 2024), (Al-Saadi et al., 2022), (
Vehicles management + Control Phan et al., 2020b)
YOLO-based Vehicle Identification and YOLO + Vehicle Identification + (Azevedo and Santos), (Ercan Avsar, 2022), (Zhang et al.), (Chen et al., 2021), (Pandilwar and
Tracking for Autonomous Vehicles Vehicle Tracking Kaur), (Prathap et al.), (Athish et al.), (Samsuri and Mohd Nazri), (Rani et al., 2024), (Soma
et al.), (Naresh et al.), (Yass and Faris, 2023), (Farid et al., 2023)
Vehicle Speed Estimation with YOLO YOLO + Speed Estimation + (Asif Hummam Rais, 2021), (Rodriguez-Rangel et al., 2022), (Pandilwar and Kaur), (Do

Autonomous Vehicles

YOLO based algorithm in tackling adversarial ~ YOLO + Autonomous Driving +
perturbations in Autonomous vehicles. adversarial perturbations
Object detection Algorithm Object detection models + YOLO
+ Autonomous vehicles

Lane detection Algorithm Lane detection models + YOLO +
Autonomous vehicle

YOLO algorithm and its application YOLO + Application + Object
detection
Road Safety and autonomous driving Transportation + Safety +

Autonomous driving

et al.), (Cvijeti¢ et al.), (Perunicic et al.), (Vela et al.), (Soma et al.), (Lin et al., 2021), (Prajwal
and Kumar), (Pemila et al., 2024), (Imanuel et al., 2024)

(Im Choi and Tian), (Jia et al., 2022), (Wu, 2024), (Jiang et al., 2023), (Li et al.), (Liang et al.,
2024)

(Hrag-Harouth Jebamikyous, 2022; Ercan Avsar, 2022; Harisankar.R; Mehdi Masmoudi

et al., 2019), (L et al., 2017), (H et al., 2018), (P et al., 2017), (Hur et al., 2013), (Chen and
Chen), (Dun Liang et al., 2020), (Mao et al., 2023), (Balasubramaniam and Pasricha, 2022), (
Mahaur and Mishra, 2023), (Song et al., 2024), (Wang et al., 2024a), (Wang et al., 2024b), (
Tahir et al., 2024), (Radha Pandey, 2021)

(Lefevre et al., 2014), (Alin et al.), (Jigang Tang and Liu, 2021) (Huu et al., 2022), (Zakaria
et al.,, 2023), (Jha et al., 2023), (Perumal et al., 2023), (Swain and Tripathy, 2024), (Oztiirk
et al., 2024), (Ji and Levinson, 2020), (Kim et al., 2008), (Mondschein et al., 2006), (Du et al.,
2022), (Tu Zheng et al., 2022), (Yongqi Dong et al., 2021), (Lizhe Liu et al., 2021), (Tu Zheng
et al., 2022), (Seokju Lee et al., 2017a), (Seokju Lee et al., 2017b), (Farzeen Munir et al.,
2020), (Dong-Hee Paek and Wijaya, 2021), (Mohanapriya et al.; Phat Nguyen Huu and Tong
Thi Quynh, 2022; Wei Yang et al., 2020; Xiang Zhang et al., 2018), (Edward Swarlat Dawam,
2020), (Dai et al., 2024), (Cao et al., 2024), (Liu et al., 2024)

(Peiyuan Jiang et al., 2021), (J and Zhigiang, 2017), (Zhiqiang and Jun), (Jiagi Fan and Li), (
Udaya Mouni Boppana et al., 2022), (Lecun et al., 1998), (Redmon and Farhadi, 2016), (
Redmon and Farhadi, 2018), (Silva et al.), (Lu et al.), (Yang et al.), (Abhishek Sarda and
Anupama Bhan; Yingfeng Cai et al., 2021; Kangkang Yang, 2022; Rui Wang et al., 2021), (
Hussain and Finelli), (Solawetz, 2020), (Joseph Nelson, 2020), (L et al., 2022), (Wang et al.), (
Zhiyang Zheng and Qin, 2023), (Chao Zhao et al., 2023), (Yulong Nan et al., 2023), (Huayi
Zhou and Lu, 2023), (Xianchong Xu et al., 2023),

(Lian et al., 2023), (Wei et al., 2023), (Wan et al., 2022), (Lee and Hwang, 2022), (G et al.,
2021), (Ma et al.), (Ji and Zheng, 2021), (Mehdi Masmoudi et al., 2021), (Zillur Rahman and
Ullah, 2020), (M and Ghantous, 2022; Kahlil Muchtar and Nasaruddin, 2020; Mario
Gluhakovic et al., 2020), (William Chin Wei Hung et al., 2022), (Liberios Vokorokos et al.,
2020), (Deshpande and Herunde, 2020), (Irvine Valiant Fanthony et al., 2021), (Huibai Wang,
2020), (Wen Boyuan, 2020), (Shen Zheng et al., 2021), (Kim, 2019), (Geiger and Lenz, 2013).
(B and PunithaMohana; Liu, 2022; Li et al., 2023; Yang et al., 2021; Lippi et al., 2021; Xiang
et al., 2023; Li. et al., 2023; Dos Reis et al., 2019; Malta et al., 2021; Narejo et al., 2021;
Zheng et al., 2022; Wang et al., 2023; Giindiiz and Isik, 2023a; Giindiiz and Isik, 2023b; Yang
et al., 2023; Yu et al., 2018)

(Khayyam et al., 2020), (Fayyazi et al., 2023a), (Kum Fai Yuen et al., 2020; Mola et al., 2022),
(Klaver, 2020), (Ming-Yuan Yu and Johnson-Roberson, 2019), (Greaser, 2022), (Lambert,
2022), (Newcomb, 2012), (Jian and Shi, 2020; Marzbani et al., 2019; Phan et al., 2020a;
Milani et al., 2020), (Dagdeviren, 2018), (Teena Sharma et al., 2022)
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enhancements, training procedures, and loss functions. This facili-
tated an understanding of how incremental modifications translate
into improved performance for AV lane and object detection tasks.

4. Identifying Gaps, Limitations, and Future Directions: As a compre-
hensive review, the analysis went beyond summarizing current ca-
pabilities, highlighting unresolved issues such as handling subtle
lane boundaries, coping with adverse weather or lighting conditions,
resisting adversarial attacks, and addressing dataset limitations.
Based on these findings, the paper proposes future research di-
rections aimed at refining YOLO and guiding it toward more robust,
reliable applications in AV systems.

Limitations of the Methodology: While the methodology was
designed to be thorough and unbiased, certain limitations are
acknowledged. Restricting the review to English-language publications
may have excluded relevant non-English studies. Moreover, relying on
established academic repositories may omit some emergent research
from less prominent sources. Nevertheless, the outlined strategy ensures
a systematically curated and analytically coherent body of literature,
providing a solid foundation from which to understand YOLO's current
position and potential trajectory in advancing autonomous vehicle
perception.

2. Mathematical modelling for lane and object detection in
autonomous driving

This section introduces a mathematical model and indices for lane
changes and object detection, forming the foundation for accurate
detection algorithms critical to safe lane-changing manoeuvres. Many
existing solutions for autonomous lane changes and lane detection rely
heavily on estimation methods, which often exhibit significant limita-
tions, particularly in the context of AV safety. These methods are typi-
cally based on assumptions and approximations, leading to inaccuracies
and unreliable outcomes. Furthermore, they frequently neglect key
factors, such as dynamic vehicle behaviours and environmental vari-
ability, which are essential for precise detection and decision-making.

The effectiveness of AV systems heavily depends on the accuracy of
their detection capabilities, as errors during lane changes can jeopardize
safety. The coexistence of autonomous and human-driven vehicles adds
complexity, requiring robust detection algorithms that can adapt to
dynamic and unpredictable driving environments. Our research focuses
on improving the reliability and performance of lane change and lane
detection systems using YOLO algorithms, which are renowned for their
real-time precision and resilience in handling complex, multi-object
scenarios.

Reliable detection is pivotal to AV safety, particularly during lane
changes. As shown in Fig. 1a and b, poor detection capabilities can lead
to inaccurate estimations, increasing the risk of unsafe manoeuvres. This
impact can be evaluated using safety and space payoff functions, which
assess how detection accuracy affects vehicle interactions. The safety
payoff (Usqry) quantifies changes in the safety factor throughout the
lane-changing process and is defined by Equation (1):

1
USafety = 5 (sz:Td - SPt:O) (€9)

where SP,_r, is the safety factor at the end of the lane change, SP;— is
the initial safety factor, and T is the time required to complete the
manoeuvre (Yu et al., 2018). The safety factor at any given time t de-
pends on the time headway (Theadway:) and a breakpoint (T3), as
expressed in the following equation:

1 Theadway ¢ < 7Tb

2|T; t
SP, = M -1-T, < Theadway t < T @

Ty
0 Theadwayt > Tb
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This piecewise function evaluates the safety factor as follows:

1. Unsafe Region ( Theagway ¢ < — Tp): When the time headway is less
than or equal to — T, the safety factor remains at 1, indicating un-
safe conditions.

2. Critical Region (— Tp < Theadway t < Tb): The safety factor decreases
linearly with \Theadway t|, reflecting the increasing risk as the vehicles
approach each other.

3. Safe Region (Theadway: > Tp, the safety factor remains at 1, signi-

fying safe conditions.

The initial time headway between vehicles is given by:

P, — P,
V2

3

Theadway t=0 =

where P; denotes the initial longitudinal position of vehicle i, and V;
represents its velocity. The time headway after T; seconds considers
relative positions and adjusted velocities:

Py —P
su=ra Py > Py
Vo +ay Ty
Theadway t=Tyq — Py —P (4)
S22 Py < Py
vi+aiTy

Here, Py; and Py; are the longitudinal positions of vehicles 1 and 2 after
T, , calculated using:

1 2

Py =P, +Ty +§(11Td 5)
1 2

Py =Py +voTy + Easz (6)

where a; and a, are the accelerations of vehicles 1 and 2. These equa-
tions form the basis for evaluating the safety payoff during lane changes.
The space payoff (Uspq.) measures changes in the space factor (RP) be-
tween vehicles:

1
Uspace :E (RPI:TCI - RPt:O) @

where RP quantifies the spatial relationship between interacting vehi-
cles (Yu et al., 2018). When two cars move in different lanes, the space
factor (RP21_2) is defined as:

-1 tr1(t) < -3
2
RPy 5(t) = 3t B +1 -3<tn(t)<0 ®
1 to1 (t) >0

where t; (t) is the time gap between vehicles, given by:
P, —
zipl P, <P,
Va2
ty = (C)]

P, —P
gpz>p1
V1

where P; represents the initial longitudinal position of vehicle i relative
to the road coordinate system, and v; denotes its initial velocity. The
time gap (t12) between the vehicles is expressed as:

P, —P, P, — P,
tip = =

= —ty (10$)

vfollawing Vfollawing

Here, Vyuowing is the velocity of the following vehicle. Since the total
payoff function incorporates t;, for scenarios where the competing lane
is occupied by Car 2, the relationship between the space factors of the
interacting vehicles is defined as:
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Fig. 1. Lane-changing scenarios: a) The competing vehicle hinders Car 2 from overtaking (aggressive competing vehicle). b) Car 1 strategically adjusts its position,
enabling Car 2 to complete the overtaking manoeuvre safely and efficiently (Cautious competing vehicle). This figure is regenerated from Fig. 1 of reference (Yu

et al., 2018).

RP15 5(t)= — RPy; »(t) (€N)

This relationship ensures that the space factor for one vehicle (RP;5_»
) is the inverse of the other (RP,;_,), maintaining consistency in evalu-
ating the spatial dynamics of vehicle interactions. When two cars move
in the same lane, the space factor of Car 2 in the instant t is calculated by:

1 tn()< -3

RPy 5(t) = % 3 <tn(<3 12)
1 tzl(t) >3

The total payoff function combines safety and space payoffs,
weighted by the driver's aggressiveness (q):

Upayoss = fw(a, @o) ((1 = B(@)*Usagery (@) + (@) *Uspace(a@) + 1) -1,0<p(q)
<1
13)

Here, a represents the vehicle's future acceleration, while a, denotes
its current acceleration. The parameter q captures the driver's aggres-
siveness and follows a Gaussian probability distribution N (0,1). The
function f,, serves as a penalty term, accounting for abrupt changes in
acceleration (i.e., jerk) and velocity, ensuring smoother transitions
during manoeuvres. The payoff function incorporates two key compo-
nents: Usqpyy, representing the safety payoff, and Ugqc., representing the
space payoff. The weight of each component is determined by (q), the
cumulative distribution function of g, which adjusts the balance be-
tween safety and space considerations. Specifically:

o f(q)*Uspace quantifies the total space payoff.
e ((1-p(q))*Usqfery quantifies the total safety payoff.

The parameter f(q) plays a critical role, as it determines the ratio
between the space and safety payoffs, reflecting the trade-off between
these two objectives. A higher $(q) prioritizes spatial considerations,
while a lower f(q) emphasizes safety. This dynamic weighting mecha-
nism allows the model to adapt to varying driving scenarios and driver
behaviours.

Existing solutions and theories addressing autonomous lane changes
and lane detection are predominantly estimation-based, yet these

methods have inherent limitations that compromise their reliability and
safety in critical applications like AV technology. Estimation methods
rely on assumptions and approximations, which often lead to inaccur-
acies. Given the high stakes of AV operations, such inaccuracies cannot
be tolerated. The complexity of autonomous lane changes and the
quality of data used for estimation further exacerbate the problem,
resulting in unreliable outcomes. This poses significant risks in scenarios
requiring precise decisions, such as lane changes. Additionally, estima-
tion methods are prone to biases stemming from the data or estimator,
which may skew results and lead to suboptimal decision-making.
Addressing these biases is essential to ensure accurate and safe
manoeuvres.

Another drawback of estimation-based solutions is their opacity;
they often involve intricate algorithms or models that are difficult to
interpret. This lack of transparency hampers the validation and assess-
ment of their reliability, making it challenging to detect and rectify
potential errors or biases. Furthermore, such methods frequently over-
look critical factors or variables that could significantly impact their
performance, leading to incomplete or flawed conclusions. In the
context of AVs, this limitation heightens safety risks during complex
manoeuvres like lane changes.

The performance of lane-change manoeuvres in AVs is closely tied to
two primary factors: detection accuracy and interaction with sur-
rounding vehicles. Safety and space payoffs, critical components of lane-
changing, depend on accurate detection. The safety factor hinges on
identifying and localizing nearby vehicles, while the space factor,
measured by the Relative Position (RP) value, determines a vehicle's
ability to maintain a safe headway. A comparative analysis of detection
techniques is crucial to address these challenges effectively.

Furthermore, the coexistence of autonomous and traditional human-
driven vehicles on the road, as predicted for the foreseeable future
(Dagdeviren, 2018), introduces additional unpredictability to traffic
dynamics. This mixed-traffic environment amplifies the need for precise
detection and reliable prediction capabilities. AVs must not only detect
and communicate with other AVs using Vehicle-to-Vehicle (V2V) tech-
nologies but also anticipate the behaviour of non-autonomous vehicles
(Khayyam et al., 2020; Al-Saadi et al., 2022; Phan et al., 2020b).

Object detection is pivotal in autonomous driving, ensuring the
identification and localization of objects in dynamic environments to
support safe navigation and decision-making. Mao et al. (2023)
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provided a comprehensive review of three-dimensional object detection
methodologies, highlighting the evolution from traditional Light
Detection and Ranging (LiDAR)-based methods to advanced multimodal
approaches integrating LiDAR, radar, and camera data for enhanced
robustness. Complementing this, Balasubramaniam and Pasricha (2022)
discussed ongoing challenges in object detection for AVs, such as
computational complexity and the need for real-time performance,
particularly under adverse weather conditions.

The detection of small objects, a critical requirement for identifying
vulnerable road users like pedestrians and cyclists, has seen significant
advancements. Mahaur and Mishra (2023) demonstrated improvements
in small-object detection by enhancing YOLOV5, Fig. 2, while Wang
et al. (2024a) proposed YOLOV8-QSD, optimized for small-object
detection in complex road scenarios. Both studies underscore the
importance of balancing detection accuracy and computational effi-
ciency shown in Fig. 3.

Adverse weather conditions pose significant challenges to object
detection models. Appiah and Mensah (2024) addressed this issue by
integrating data augmentation and adversarial training techniques,
enhancing robustness in challenging environments like fog and rain.
Similarly, Tahir et al. reviewed traditional and deep learning ap-
proaches, emphasizing the necessity for advancements to maintain
performance under extreme conditions. Wang et al. (2024b) illustrated
the efficacy of YOLOv4 in urban object detection but noted the
computational limitations for deployment on resource-constrained sys-
tems. Song et al. (2024) further highlighted the importance of
robustness-aware training datasets and adversarial resilience to ensure
reliability across diverse scenarios.

To overcome these challenges, advanced object detection algorithms
have emerged as critical tools for enhancing AV safety and performance
during lane-change manoeuvres. These algorithms, with their high ac-
curacy, real-time perception capabilities, and robustness in complex
scenarios, address major issues like variability, dynamic environments,
and human driving behaviour. Addressing these challenges requires a
synergistic approach combining robust sensor technologies, advanced
machine learning techniques, and continuous adaptation to real-world
conditions (Khayyam et al., 2020; Milani et al., 2020; Al-Saadi et al.,
2022).
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3. Overview of lane detection models for autonomous vehicles

Accurate lane detection is an indispensable component of autono-
mous vehicle systems, ensuring precise navigation and safety in dynamic
driving environments. Effective lane detection helps prevent potential
dangers and accidents, playing a pivotal role in facilitating successful
lane changes. Recent advancements have introduced a variety of ap-
proaches, ranging from traditional computer vision techniques to so-
phisticated deep learning models. This section synthesizes findings from
notable studies on lane detection algorithms, emphasizing their meth-
odologies, applications, and relevance to autonomous driving.

Huu et al. (2022) proposed a YOLO-based lane and obstacle detec-
tion algorithm, optimized for advanced network architectures in
self-driving cars. This innovative method integrates real-time lane
detection with obstacle avoidance, showcasing the adaptability and ef-
ficiency of YOLO in handling simultaneous tasks in dynamic scenarios.
Similarly, Zakaria et al. (2023) conducted a systematic review of lane
detection techniques, categorizing existing algorithms into traditional
methods (e.g., Hough Transform and Canny Edge Detection) and mod-
ern approaches employing convolutional neural networks (CNNs). Their
findings highlighted the superior accuracy of deep learning models in
addressing complex lane geometries and challenging conditions, though
computational costs remain a critical limitation for real-time
deployment.

Jha et al. (2023) analysed lane and object detection methods,
emphasizing the importance of integrating both functionalities for ho-
listic autonomous driving systems. Their study underscored the
real-time efficiency of YOLO-based models for lane detection but iden-
tified challenges in scenarios involving faded or occluded lane markings.
Perumal et al. (2023) introduced LaneScanNET, a multi-task learning
architecture designed for simultaneous lane and obstacle detection. This
integrated approach reduced computational overhead while maintain-
ing high accuracy, demonstrating its potential in resource-constrained
settings.

Swain and Tripathy (2024) utilized YOLOvV5's segmentation capa-
bilities to develop a robust lane detection framework capable of
handling complex road scenarios, including curves and intersections.
Despite its strong performance, further optimization was noted to
enhance adaptability to diverse environmental conditions. Oztiirk et al.
(2024) extended YOLOV5 to incorporate lane detection alongside
vehicle, traffic sign, and pedestrian recognition, creating a
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Fig. 2. Detection performance comparison in varying traffic environments: (a) YOLOv5 and (b) improved Scaled (iS)-YOLOV5. As traffic density increases from top to
bottom, YOLOV5's prediction confidence decreases, leading to missed targets. In contrast, the proposed iS-YOLOv5 model maintains high confidence in detecting
traffic signs and traffic lights, even in high-density traffic scenarios. This figure is regenerated from Fig. 8 of reference (Mahaur and Mishra, 2023).
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Original image

YOLOv8n

YOLOv8n+Soft-NMS

Fig. 3. Comparison of detection results using three representative images. In these images, the vehicle in front is partially obscured by the vehicle behind it. When
using the baseline YOLOv8n model, the front vehicle cannot be detected due to significant occlusion. However, with the application of Soft- Non-Maximum Sup-
pression (NMS), the obscured vehicle is successfully detected, demonstrating improved detection performance under occlusion scenarios. This figure is regenerated

from Fig. 11 of reference (Cao et al., 2024).

multi-functional framework for comprehensive traffic scene under-
standing. However, achieving consistent lane detection under adverse
weather and lighting conditions remains a challenge.

In addition to lane detection, several theoretical frameworks support
lane-changing decisions. These include Game Theory (Ji and Levinson,
2020), Gap Acceptance Theory (Kim et al., 2008), Cognitive Mapping
Theory (Mondschein et al., 2006), and Lane Change Safety Index Theory
(Du et al., 2022). While these theories provide valuable insights, their
practical applications often depend on accurate and reliable lane
detection systems.

Table 2 provides a detailed comparison of existing lane detection
models, outlining their advantages and limitations. This comparative
analysis highlights specific challenges such as computational costs,
flexibility, robustness in complex scenarios, and sensitivity to occlusions
or small lanes. YOLO-based models offer significant advantages,
including real-time perception and adaptability to multi-object detec-
tion tasks. However, further research is required to leverage their po-
tential fully.

Since the introduction of YOLO in 2015 (J and Zhigiang, 2017),
successive versions have evolved to address various object detection
challenges, making YOLO a significant milestone in real-time vision--
based algorithms. Table 3 outlines the timeline of YOLO development,
showcasing the distinguished features and limitations of each version,
from YOLOv1 to YOLOv11. The progression of YOLO demonstrates
continuous improvements in detection accuracy, computational effi-
ciency, robustness to occlusion, and adaptability to different environ-
ments. For instance, YOLOv5 introduced advanced features such as
Cross Stage Partial (CSP)-Darknet-53 as a backbone, enhancing speed
and accuracy for autonomous systems. More recent versions like
YOLOvV10 and YOLOvV11 focus on lightweight models with gradient flow
optimization and small-object detection capabilities, making them
particularly suitable for real-time applications in resource-constrained
settings listed in Table 4.

YOLO's ability to handle real-time object detection has made it a
promising algorithm for autonomous vehicles (AVs). Its application
spans diverse challenges, including severe weather conditions, low-light
environments,  occlusion  handling  (Ming-Yuan  Yu  and
Johnson-Roberson, 2019), and intelligent traffic monitoring (Teena
Sharma et al., 2022). The timeline illustrates how YOLO has adapted to
meet the increasing demands of AV applications, addressing specific
needs such as multi-object detection, improved localization, and better
performance in cluttered or dynamic scenarios.

Peiyuan Jiang (Peiyuan Jiang et al., 2021) reviewed the progression
of YOLO, emphasizing its advancements in feature extraction and target
recognition, highlighting its role as a versatile and efficient detection
system. While other studies, such as those by Radha Pandey (Radha
Pandey, 2021) and Mehdi Masmoudi (Mehdi Masmoudi et al., 2019),
evaluated object detection algorithms, they did not focus specifically on
YOLO's real-time applications for AVs. Similarly, Udaya Mouni Boppana
and Deivanayagampillai (Udaya Mouni Boppana et al., 2022) compared
YOLO versions using distorted vehicle datasets, demonstrating their
effectiveness under challenging conditions. Notably, YOLO has been
shown to perform robustly under adverse conditions such as heavy rain
or fog, where traditional methods often fail. However, existing research
often overlooks YOLO's role in lane detection and lane-changing tasks,
which are critical for the safety and functionality of AV systems.

This survey bridges that gap by focusing on YOLO's application in
lane detection and manoeuvring. It identifies gaps in current method-
ologies, such as limited generalization across datasets and challenges in
real-time adaptability for diverse driving environments. Furthermore, it
highlights opportunities for future advancements, aiming to improve the
reliability and safety of autonomous vehicles in complex driving sce-
narios. By exploring YOLO's potential in addressing these challenges,
this review lays the groundwork for developing more advanced algo-
rithms that integrate object detection with lane-detection tasks, ulti-
mately enhancing AV performance and traffic safety.

4. Description of YOLO

Encouraged by the LeNet (Lecun et al., 1998) architecture for image
classification, the original YOLO (version 1) architecture was developed
as a Convolutional Neural Network (CNN) comprising 24 convolutional
layers interspersed with max-pooling operations, followed by two fully
connected layers at the end (Fig. 4). This architecture is designed around
three main components: the Backbone, Neck, and Head. The Backbone
represents the initial stage of the network, where convolutional layers
are used to apply filters for preprocessing the input image. These layers
progressively detect and process key features, starting from basic pat-
terns like lines and edges to more complex geometries, ultimately
enabling the identification of objects within the scene. The Neck serves
as an intermediary layer, bridging the Backbone and the Head. It con-
sists of fully connected feed-forward layers that aggregate and refine
features extracted by the Backbone. This stage is critical for predicting
object classification probabilities and proposing bounding boxes around
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Table 2
Comparative analysis of lane detection models - datasets, advantages, and limitations.
STUDY DATASET MODEL TYPE ADVANTAGES DRAWBACK
Tu Zheng et al. (2022) cuLANE CLRNET (DLA-34) Detect Lanes and improved localization ~ Fixed architecture limits flexibility;
accuracy unsuitable for all applications; limited
generalization.

Yongqi Dong et al. (2021) TuSimple SCNN_UNet_ConvLSTM2 Detect Lanes in challenging driving High computational cost and limited

scenes flexibility

Lizhe Liu et al. (2021) CurveLanes CondLaneNet-L (ResNet- Detect lanes with complex topography Designed specifically for lane

101) detection; unsuitable for other tasks
like vehicle or sign detection.

Tu Zheng et al. (2022) LLAMAS CLRNET (DLA-34) Detect Lanes and improved localization Fixed architecture limits flexibility;

accuracy unsuitable for all applications; limited
generalization.

Cheng Han et al. (2022) BDD100K YOLOPv2 Panoptic Driving Perception High computational cost; struggles to
detect small objects due to anchor-
based design.

Seokju Lee et al. (2017a) Caltech Lanes VPGNet Detect and classify lanes and road Relies heavily on accurate vanishing

Washington markings point detection, which is not always
reliable in practice.

Farzeen Munir et al. (2020) DET LDNet Lane detection and Localization in real- Limited ability to handle occlusion;

time performance struggles in complex urban
environments.

Dong-Hee Paek and Wijaya (2021) K-Lane LLDN-GFC Lane detection and real-time High computational cost; limited

performance ability to handle occlusion.

(Mohanapriya et al.; Phat Nguyen Huu and Custom Data YoloV3 Lane and obstacle detection Limited sensitivity to small lanes;

Tong Thi Quynh, 2022; Wei Yang et al., struggles with complex urban
2020; Xiang Zhang et al., 2018) environments.

Edward Swarlat Dawam (2020) Custom Data YoloV3 Smart city lane detection Limited performance in complex
environments.

Dai et al. (2024) Custom Data YoloVv8 Lane detection using Computational complexity affects real-

Cao et al. (2024)

Liu et al. (2024)

Custom Data

Custom Data

MSD-YOLO Improved
YoloV8
DF-Yolo

Hough Transformation

Lane detection in crowded urban
settings

Addresses the challenges posed by
significant differences in target scales
within complex scenes.

time performance.

Requires significant training time due
to model complexity.

Generalization ability across datasets
and driving conditions needs further
validation.

detected objects. The Head, which is the final component, generates the
network's output. It applies anchor boxes to the refined feature maps
from the Neck and produces final output vectors that include class
probabilities, objectness scores, and bounding box coordinates. This
modular structure of YOLO allows flexibility, as the Head can be
replaced or customized to adapt to specific tasks or datasets, demon-
strating its versatility in various object detection applications.

4.1. Key processes in the YOLO algorithm

Fig. 4 provides an overview of the fundamental steps involved in the
YOLO algorithm. The process begins with the division of the input image
into an N x N grid of equally shaped cells. Each grid cell is assigned the
responsibility of localizing and predicting the class of the object it
overlaps with, along with a probability or confidence value for that
prediction. Once the image is divided into grids, the algorithm employs
Bounding Box Regression to determine bounding boxes, which are
rectangular regions highlighting all the detected objects within the
image. Since an image may contain multiple objects, YOLO uses a single
regression module to extract the attributes of these bounding boxes in a
unified manner.

To refine the results, Intersection over Union (IOU) is applied to filter
and retain the relevant grid cells, ensuring precise localization of the
detected objects. Non-Maximum Suppression is then used to eliminate
redundant bounding boxes, retaining only those with the highest prob-
ability scores for each detected object. This approach ensures that the
output is concise and efficient, providing accurate localization and
classification.

The architecture of YOLO enables it to learn highly generalized
features, allowing it to achieve superior detection speeds compared to
other state-of-the-art detection methods, such as Region-Based Con-
volutional Neural Networks (R-CNN, Faster R-CNN, Mask R-CNN, and

Granulated R-CNN) (Jiaqi Fan and Li). However, YOLO has certain
limitations. The algorithm struggles with detecting small objects and
distinguishing them when displayed in groups, such as a line of ants or
densely packed items. Furthermore, YOLO's accuracy is generally lower
compared to two-step object detection algorithms like Fast R-CNN,
which use more elaborate mechanisms for classification and localiza-
tion. Despite these limitations, YOLO remains a powerful and widely
adopted algorithm for object detection due to its real-time performance
and simplicity.

4.2. Performance metrics

Evaluating the performance of YOLO algorithms involves a
comprehensive framework that relies on various performance metrics to
assess their accuracy, localization capability, and computational effi-
ciency. Among these metrics, Recall and mAP are the most critical for
determining the model's effectiveness. Recall measures the model's
ability to detect objects present in the input image, with values closer to
100 % indicating better detection performance. Precision evaluates the
proportion of correct predictions among all predictions, with values
ranging from O to 1, where higher values indicate fewer false detections
and better accuracy.

The evaluation framework for YOLO algorithms often incorporates
the 'true-false' and 'positive-negative' criteria, providing a structured
approach to analyze detection performance. These criteria include True
Positive (TP), False Positive (FP), False Negative (FN), and True Nega-
tive (TN). A True Positive (TP) is recorded when the algorithm correctly
detects an object, and the predicted bounding box overlaps with the
ground truth box above a specified IoU threshold. False Positives occur
when the algorithm incorrectly predicts a bounding box for a non-
existent object or when the overlap with the ground truth box is
below the IoU threshold. False Negatives represent cases where the
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Table 3
Comparison of YOLO versions: Features and limitations of YOLOv1 to YOLOv11
for object detection and autonomous vehicle applications.

VERSION FEATURES LIMITATIONS
YOLOv1 - Introduces Darknet framework - High localization error.
(2015) and Leaky Rectify Unit - Detects a maximum of two
(LReLU) with linear activation objects simultaneously.
function. - Poor prediction accuracy for
- Faster prediction than Fast R- objects with aspect ratios not
CNN. included in the training data.
YOLOv2 - Introduces Darknet-19 as - Not effective for small objects.
(2016) backbone. - High rate of missed detections
- Incorporates softmax, batch for distant objects.
normalization, and anchor
boxes.
YOLOv3 - Introduces Darknet-53 as - Relatively low efficiency on
(2018) backbone and independent larger-sized objects that run
logistic classifiers. within the Darknet system.
- Incorporates Feature Pyramid
Network (FPN) and binary
cross-entropy loss.
YOLOv4 - Uses CSPDarknet-53 as back- - Slightly lower detection speed
(2020) bone, Spatial Pyramid Pooling compared to YOLOv3.
(SPP), and PANet for feature - High computational
aggregation. requirements.
- Introduced "Bag of Freebies"
and "Bag of Specials" for
optimization.
YOLOV5 - Employs Focus structure with - Lower detection accuracy
(2020) CSPDarknet. compared to YOLOv4.
- Auto-learns bounding boxes
and improves loss
calculations.
YOLOvV6 - Incorporates efficient - Lacks pre-trained models for
(2021) decoupled head with SIoU images larger than 640 pixels.
loss, EfficientRep backbone, - Limited types of pretrained
and Rep-PAN. models.
- Introduces anchor-free
training and SimOTA tag
assignment.
YOLOv7 - Introduces de-coupled YOLO - Poor detection accuracy in
(2022) detection heads. crowded scenes or for objects
- Improved inference speed and far from the camera.
model accuracy.
YOLOvV8 - Employs a unified network - Poor performance for object
(2023) encoding implicit and explicit detection in crowded scenes or
knowledge for reference. distant objects.
- Suitable for multi-tasking and
extendable for multi-modal
learning.
YOLOvV9 - Incorporates anchor-free split - Extensive use of convolutional
(2024) ultralytics heads. blocks and C2f blocks
- Improved loss function and increases computation and
better regularization parameter count.
techniques.
YOLOV1O0 - Introduces Programmable - Focuses on lightweight models
(2024) Gradient Information (PGI) that are under-parameterized,
and GELAN (Gradient risking loss of information
Enhanced Lightweight during the feedforward
Architecture Network) for process.
parameter utilization.
YOLOv11 - Introduces CPSA (Cross-Stage - Increased computational
(2024) Partial with Self-Attention) demands and larger model size

and C3f2 to replace C2f blocks.
Enhanced accuracy for
detecting small and occluded
objects.

limit deployment on devices
with constrained resources.

algorithm fails to detect an object present in the ground truth, while
True Negatives, though less relevant in object detection, indicate the
correct absence of predictions in areas without objects.

Metrics such as precision and recall are derived from these criteria
and are essential for evaluating object detection accuracy. Precision is
calculated as shown in Equation (14):
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TP
Precision=———— 1
recision =z a4
Similarly, recall is determined using Equation (15):
TP
Recall = PN (15)

The balance between precision and recall is often expressed through
the Fl-score, which combines these two metrics into a single value,
allowing for a comprehensive evaluation of the algorithm's perfor-
mance. Localization accuracy is another critical metric, assessed using
IoU. IoU measures the overlap between predicted and ground truth
bounding boxes, providing an indication of how accurately the algo-
rithm localizes objects. The formula for IoU is provided in Equation (16):

__ Area of Overlap

= 16
Area of Union (16)

Mean Average Precision further evaluates the algorithm's overall
performance by calculating the average precision across all classes. It is
defined as shown in Equation (17):

1
mAP = . Z (Average Precision per class) 17)

where n represents the total number of classes. Mean Average Precision
is particularly useful for benchmarking object detection models, as it
accounts for both precision and recall across all categories in the dataset.

Additional metrics, including Location Loss, Classification Loss, and
Confidence Loss, provide further insights into the performance of YOLO.
Location Loss evaluates the error in bounding box coordinates, while
Classification Loss assesses the accuracy of predicted category labels for
each detection. Confidence Loss measures the reliability of the predicted
bounding boxes, accounting for the probability that each box contains a
relevant object. Furthermore, Detection Time is critical for real-time
applications, as it quantifies the time required for the algorithm to
produce detection results, ensuring that it meets the stringent timing
requirements of autonomous systems. Computational performance is
often measured using Billion of Floating-Point Operations Per Second
(BFLOPS) and Giga Floating Point Operations Per Second (GFLOPS),
which indicate the number of floating-point operations executed per
second, providing an understanding of hardware efficiency during al-
gorithm deployment.

Although YOLO demonstrates exceptional real-time performance, it
faces challenges such as accurately detecting small objects, dis-
tinguishing densely packed objects, and achieving the accuracy of multi-
step object detection methods like Fast R-CNN. By focusing on these
metrics, researchers can refine YOLO's performance, optimize parame-
ters, and address its limitations. This ensures consistent benchmarking
across datasets, facilitating meaningful comparisons and driving ad-
vancements in object detection, particularly in applications like auton-
omous driving.

4.3. Evolution and advancements of YOLO versions

Since its inception, YOLO has undergone significant development,
with each version introducing innovations to enhance its performance,
speed, and applicability in real-time object detection. Below is a detailed
description of each YOLO version, emphasizing their distinct features,
advancements, and limitations.

YOLOV2: It built upon the original model by introducing Darknet-19
as its backbone, which consisted of 19 convolutional layers. Batch
normalization was implemented to stabilize training and improve
convergence. The model used K-means clustering for anchor box gen-
eration, addressing the limitation of single object predictions per grid
cell present in YOLOv1. YOLOv2 achieved a mAP of 78.60 % with an
inference rate of 67 frames per second on the Pattern Analysis, Statistical
Modelling, and Computational Learning Visual Object Classes (Pascal
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Table 4

Comparative performance metrics of YOLO versions (YOLOV5 to YOLOv11).
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YOLO Version Params FLOPs (G) APval (%) Latency (ms) YOLO Version Params FLOPs (G) APval (%) Latency (ms)
YOLOV5-N 1.9 4.5 28.0 1.7 YOLOV8-N 3.2 8.7 37.3 6.16
YOLOVS5-S 7.2 16.5 37.4 2.7 YOLOVS8-S 11.2 28.6 44.9 7.07
YOLOV5-M 21.2 49.0 45.4 5.5 YOLOV8-M 25.9 78.9 50.6 9.50
YOLOV5-L 46.5 109.1 49.0 8.8 YOLOVS-L 43.7 165.2 52.9 12.39
YOLOV6-N 4.7 11.4 37.5 1.3 YOLOvV8-X 68.2 257.8 53.9 16.86
YOLOV6-S 18.5 45.3 45.0 2.9 YOLOV9-N 2.0 7.7 38.3 6.0
YOLOvV6-M 34.9 85.8 50.0 5.7 YOLOV9-S 7.2 26.8 46.8 6.5
YOLOV6-L 59.6 150.7 52.8 10.3 YOLOV9-M 20.1 76.7 51.4 8.0
YOLOV6-3.0-N 4.7 11.4 37.0 2.69 YOLOV9-L 25.5 102.6 53.0 9.0
YOLOV6-3.0-S 18.5 45.3 44.3 3.42 YOLOV9-X 58.1 189.4 55.6 11.5
YOLOV6-3.0-M 1.9 4.5 28.0 1.7 YOLOV10-N 2.3 6.7 39.5 1.84
YOLOV6-3.0-L 59.6 150.7 51.8 9.02 YOLOV10-S 7.2 21.6 46.8 2.49
Gold-YOLO-N 5.6 12.1 39.6 2.92 YOLOvV10-M 15.4 59.1 51.3 4.74
Gold-YOLO-S 21.5 46.0 45.4 3.82 YOLOV10-L 24.4 120.3 53.4 7.28
Gold-YOLO-M 41.3 87.5 49.8 6.38 YOLOV10-X 29.5 160.4 54.4 10.70
Gold-YOLO-L 75.1 151.7 51.8 10.65 YOLOv11-N 2.6 6.5 39.5 1.5
YOLOvV7-N 6.2 5.8 333 1.3 YOLOv11-S 9.4 21.5 47.0 2.5
YOLOvV7-S 6.2 13.7 37.4 2.4 YOLOv11-M 20.1 68.0 51.5 4.7
YOLOv7-M 36.9 104.7 51.2 9.0 YOLOv11-L 25.3 86.9 53.4 6.2
YOLOV7-E6E 151.7 843.2 56.8 59.6 YOLOvV11-X 56.9 194.9 54.7 11.3

Note: N — Nano for small and lightweight tasks, S — Small with improved accuracy, M — Medium for general-purpose use, L — Large for higher accuracy with higher
computation, X — Extra-large for maximum accuracy and performance.

Table 5

Performance of YOLO-based algorithms: Overview of modified or customized methods built on baseline YOLO backbones, showcasing their parameters, FLOPs, mAP50

scores, FPS, and backbone architecture.

YOLO Version Params FLOPs (G) mAP50 (%) FPS Backbone Reference
KP-YOLO - - - - YOLO adapted for QR codes (Hussain and Finelli)
SSDA-YOLO - - - - YOLOvV5 Huayi Zhou and Lu (2023)
HD-YOLO - - - 65 Fisheye optimized YOLO (Wei et al., 2023)
MAD-YOLO 11.9 39.5 53.4 163.9 Improved YOLOvV5 Xianchong Xu et al. (2023)
YOLO-AFC - - 54.25 15.1 YOLOv3 Lee and Hwang (2022)
YOLO-LRDD 19.8 17.4 57.6 86 YOLOvV5s with Shuffle-ECANet Wan et al. (2022)
YOLO-Compact 3.49 - 59.7 79 Simplified YOLO (Lu et al.)
YOLOX 25.3 73.8 65.6 155 Adapted YOLOv3 G et al. (2021)
YOLOR 80.0 - 74.30 30 Unified network (Azevedo and Santos)
YOLO-FD - - 75.2 34 Modified YOLOv3 (Silva et al.)
RDD-YOLO N/A - 81.1 57.8 Improved YOLOV5 Chao Zhao et al. (2023)
ORO-YOLO 7.5 - 82.8 38 Improved YOLOX Lian et al. (2023)
YOLO-CIR 35.9 50.4 84.9 30 YOLOV5, ConvNeXt Jinjie Zhou et al. (2023)
WGB-YOLO 50.9 - 86 34.6 Modified YOLOv3 Yulong Nan et al. (2023)
TS-YOLO 11.1 99.1 92.0 137 YOLOv4 with additional SPP (Yang et al.)
YOLO-Cigarette - - 95.2 49 Improved YOLOvV5 (Ma et al.)
YOLO-BYTE - - 97.3 47 YOLOv7 with ACmix Zhiyang Zheng and Qin (2023)
BACKBONE E NECK HEAD
Input CNN CNN :
Image Layer Max Pool Layer Max Pool FC FC Output

Series of Convolution + Max Pool Layers
(24 convolution Layers)

Fully Connected Layers

Fig. 4. Architecture of YOLO Version 1, illustrating the three main components—Backbone, Neck, and Head. The Backbone consists of a series of 24 convolutional
layers interspersed with max-pooling layers for feature extraction. The Neck contains two fully connected layers for object classification and bounding box proposals,

while the Head produces the final output, including class probabilities, objectness scores, and bounding box coordinates.

VOC) dataset (Redmon and Farhadi, 2016). While YOLOv2 performed
well on large object detection, it struggled with small objects such as
traffic lights due to limitations in feature extraction.

YOLOV3: It adopted Darknet-53 as its backbone (Redmon and Far-
hadi, 2018), a deeper and more robust architecture compared to
Darknet-19. It introduced binary cross-entropy loss and an independent
logistic classifier, replacing the SoftMax activation function used in
YOLOv2. Additionally, YOLOv3 integrated a Feature Pyramid Network

(FPN) for multi-scale detection, which improved the model's ability to
detect small and overlapping objects. On the COCO dataset, YOLOv3
achieved a mAP of 44.3 % and an inference rate of 95.2 frames per
second (Peiyuan Jiang et al., 2021). Despite its advancements, it
exhibited relatively low performance on larger objects compared to its
predecessors.

YOLOvV4: It brought substantial improvements with CSPDarknet53
as its backbone and the addition of Spatial Pyramid Pooling (SPP) and

10
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Path Aggregation Network (PANet) for enhanced feature fusion. It
introduced innovative techniques like "Bag of Freebies" (data augmen-
tation during training) and "Bag of Specials" (post-processing modules)
to improve mapping accuracy and inference speed. On the COCO data-
set, YOLOv4 achieved a mAP of 67.5 % with an inference rate of 62
frames per second. However, its larger model size and computational
requirements made it less suitable for resource-constrained environ-
ments (Abhishek Sarda and Anupama Bhan; Yingfeng Cai et al., 2021;
Kangkang Yang, 2022; Rui Wang et al., 2021).

YOLOvV5: While not developed by the original YOLO authors,
YOLOVS introduced a Focus structure with CSPDarknet as its backbone.
It emphasized ease of deployment and included auto-learning bounding
box anchors for better adaptation to datasets. Despite an inference rate
of 140 frames per second, YOLOv5's mAP of 56.40 % was lower than that
of YOLOv4, highlighting trade-offs in accuracy for improved speed
(Joseph Nelson, 2020).

YOLOV6: It introduced architectural enhancements with an Efficient
Representation (EfficientRep) Backbone and a Re-parameterized Path
Aggregation Network (Rep-PAN) Neck, optimized for hardware-friendly
designs. Its decoupled head structure incorporated the Scaled Intersec-
tion over Union (SIoU) loss function, redefining penalty metrics for
better regression accuracy (L et al., 2022). YOLOv6 achieved a mAP of
43.1 % and an inference rate of 520 frames per second. However, its
applicability was limited to images no larger than 640 pixels, making it
less versatile for larger datasets.

YOLOv7: It featured modular architecture with a Backbone
(including Bottleneck Convolution (BConv), Efficient Layer Aggregation
Network (ELAN), and Max Pooling Convolution (MPConv)), a Path
Aggregation Feature Pyramid Network (PAFPN) as the Neck, and a
Prediction head for confidence, category, and bounding box generation
(Wang et al., 2022). This architecture efficiently fused multi-scale fea-
tures, enabling YOLOV7 to achieve a balance between accuracy and
speed, making it suitable for various object detection tasks.

YOLOVS8: The latest addition to the YOLO series of real-time object
detectors, was released in 2023 by Ultralytics [https://github.com/ultr
alytics/ultralytics]. It sets a new benchmark for accuracy and speed in
object detection, building on the advancements of its predecessors.
YOLOVS introduces innovative features and optimizations, making it a
versatile solution for a wide range of object detection tasks across
various applications. The model incorporates advanced backbone and
neck architectures, enhancing feature extraction and detection perfor-
mance. Its anchor-free, split Ultralytics head improves accuracy and
efficiency compared to traditional anchor-based methods. Striking an
ideal balance between accuracy and speed, YOLOVS8 is particularly
suited for real-time object detection in diverse domains. YOLOVS offers a
range of pre-trained models tailored to specific tasks and performance
requirements, simplifying model selection for users. The series includes
specialized models for tasks such as object detection, instance segmen-
tation, pose/keypoint detection, and classification. These models are
individually optimized for high performance and accuracy and are
compatible with multiple operational modes, including inference, vali-
dation, training, and export. This flexibility makes YOLOvS8 adaptable to
different stages of development and deployment.

YOLOV9: Released in 2024, YOLOV9 incorporated the Information
Bottleneck Principle and Reversible Functions to improve data retention
across layers, enhancing gradient stability and convergence (Wang
et al.). Its novel Programmable Gradient Information (PGI) and Gener-
alized Efficient Layer Aggregation Network (GELAN) optimized
computational efficiency and accuracy, positioning YOLOV9 as a leading
choice for real-time object detection.

YOLOV10: The architecture of YOLOvV1O0 is designed to operate
without NMS, employing consistent dual assignments to significantly
reduce post-processing time and enhance overall latency. This is ach-
ieved through a lightweight classification head and various architectural
optimizations that minimize computational redundancy. YOLOv10
demonstrates improved performance in the detection of small objects,
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particularly when employing a lower confidence threshold. The
consistent dual assignment strategy enhances robust detection capabil-
ities across diverse scenarios. Compared to YOLOv8, YOLOv10 excels in
post-processing speed due to its innovative NMS-free approach, making
it highly suitable for real-time applications where latency is a critical
factor. In terms of detection accuracy, both models perform well; how-
ever, YOLOV10 exhibits a distinct advantage in handling small objects,
especially with a lower confidence threshold. Furthermore, YOLOv10
efficiently optimizes its parameters, resulting in a model that is not only
faster but also more compact than previous versions. YOLOv10 also
introduces a scalable model framework tailored to specific tasks and
performance requirements:

e N — Nano for small and lightweight tasks.

e S — Small upgrade of Nano with some extra accuracy.

e M — Medium for general-purpose use.

e L — Large for higher accuracy with higher computation.
e X — Extra-large for maximum accuracy and performance.

These scalable versions allow YOLOv10 to address a wide range of
applications, from resource-constrained tasks to high-precision,
computationally intensive operations.

YOLOvV11: The latest iteration, integrated features from YOLOvV9 and
YOLOV10 to enhance speed and efficiency. It utilized multi-scale
detection layers to ensure accurate identification of objects of varying
sizes. YOLOv11 incorporated optimized non-maximum suppression

techniques, achieving high detection accuracy while remaining
computationally lightweight, making it versatile for diverse
applications.

Each YOLO version represents a step forward in addressing chal-
lenges related to real-time object detection, including speed, accuracy,
and adaptability. From its early iterations focused on large object
detection to the latest anchor-free designs for small objects, YOLO has
evolved to meet the demands of increasingly complex real-world sce-
narios, particularly in autonomous driving.

4.4. YOLO-based algorithms and custom variants

YOLOx: It introduces notable enhancements to the YOLO frame-
work, establishing itself as a high-performance anchor-free detector.
Leveraging recent advancements such as decoupled heads, an anchor-
free approach, and an advanced label-assignment strategy, YOLOx
achieves a superior balance between speed and accuracy. It builds upon
the YOLOvV3 architecture, ensuring extensive compatibility and adapt-
ability across various sizes.

YOLO-BYTE: It improves the YOLOv7 backbone by incorporating a
Self-Attention and Convolution mixed module (ACmix), enhancing
feature extraction in complex scenarios. To reduce model complexity, it
employs a lightweight Spatial Pyramid Pooling Cross Stage Partial
Connections (SPPCSPC-L) module, optimizing performance while
addressing missed and erroneous detections (Zhiyang Zheng and Qin,
2023).

RDD-YOLO: It is based on YOLOV5 and designed for fault detection.
The model features Res2Net, Convolution, Batch Normalization, and
SiLU (CBS), and Spatial Pyramid Pooling (SPP) blocks as its backbone
and introduces a Decoupled Feature Pyramid Network (DFPN) as its
neck. Using Complete Intersection over Union (CIoU) loss, it enhances
the network's ability to detect and locate defects with precision (Chao
Zhao et al., 2023).

YOLO-CIR: It combines YOLOv5 with ConvNeXt to optimize infrared
object detection, effectively addressing challenges in low-visibility en-
vironments (Jinjie Zhou et al., 2023).

WGB-YOLO: It modifies YOLOv3 for multi-classification tasks using
a wing feature-enhanced CSP backbone and a Bidirectional Feature
Pyramid Network (Bi-FPN) head network. This architecture achieves
balanced multiscale feature fusion, enhancing detection accuracy in
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agricultural settings (Yulong Nan et al., 2023).

SSDA-YOLO: It addresses domain adaptation challenges with a semi-
supervised framework built on YOLOv5. By integrating knowledge
distillation and consistency loss functions, Semi-Supervised Domain
Adaptation (SSDA)-YOLO effectively adapts to cross-domain object
detection tasks (Huayi Zhou and Lu, 2023).

MAD-YOLO: It optimizes YOLOV5 for underwater detection. Using
Visual Object Vision (VOV) DarkNet as its backbone, the model en-
hances multiscale feature extraction to improve detection accuracy in
aquatic environments (Xianchong Xu et al., 2023).

YOLO-Cigarette: It improves YOLOV5 by integrating a Fine-grained
Spatial Pyramid Pooling (FSPP) module and a Multi-Spatial Attention
Mechanism (MSAM), enhancing small-target detection capabilities
(Xianchong Xu et al., 2023).

ORO-YOLO: It enhances YOLOX for on-road object detection by
using a reparameterization method and a feature enhancement module.
This design improves performance in detecting complex road environ-
ments (Lian et al., 2023).

HD-YOLO: It addresses fisheye distortion issues by incorporating a
radius-aware loss function and a channel attention module, making it
highly effective for head detection tasks in distorted images (Wei et al.,
2023).

YOLOR: It uses a unified network that encodes implicit and explicit
knowledge, excelling in multi-task learning. With a mAP of 74.3 and an
inference rate of 30 FPS on the COCO dataset, it offers fast and reliable
performance for multi-modal learning tasks.

YOLOX: It is an anchor-free algorithm that uses decoupled detection
heads. By separating classification and regression tasks, YOLOX en-
hances computation cost efficiency, convergence speed, and model ac-
curacy. On the COCO dataset, it achieves a mAP of 51.20 % and an
inference rate of 57.8 FPS.

YOLO-LRDD: It modifies YOLOv5s with Shuffle-Efficient Channel
Attention Network (ECANet) as its backbone and BiFPN for robust
feature aggregation. This configuration improves the network's ability to
describe features and enhances reliability (Wan et al., 2022).

YOLO-AFC: It introduces adaptive frame control to address real-time
processing challenges in network camera environments. YOLO-AFC
minimizes service delays while maintaining high precision and ease of
use (Lee and Hwang, 2022).

YOLO-FD: It modifies YOLOvV3 to specialize in face detection,
achieving real-time detection for faces as small as 16 pixels at 34 FPS
(Silva et al.).

YOLO-Compact: It is designed for single-category detection, opti-
mizing the YOLO framework for lightweight and efficient applications
(Lu et al.).

TS-YOLO: It improves YOLOv4 by adding two additional SPP mod-
ules, enhancing accuracy and increasing the number of detected objects
(Yang et al.).

KP-YOLO: It modifies the YOLO algorithm to detect feature points in
single-class settings, such as QR code detection (Hussain and Finelli).

WOG-YOLO: Xu et al. (2023) introduced this model, which in-
tegrates a weighted optimization graph with YOLO. It improves detec-
tion accuracy and speed in complex road environments.

MCS-YOLO: Cao et al. (2023) developed this multiscale detection
algorithm for recognizing diverse objects in cluttered road environ-
ments. It enhances recognition by leveraging multiscale features.

YED-YOLO: Bao and Gao (2024) introduced this algorithm, focusing
on energy-distribution-based improvements to enhance YOLO's detec-
tion accuracy and robustness in autonomous driving systems.

5. Applications and performance analysis of YOLO variants in
object detection

In this section, we explore the diverse applications of YOLO algo-
rithms in object detection, highlighting their practical utility across
various domains. A comparative analysis is then conducted to evaluate
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the performance of different YOLO variants using two widely recognized
benchmark datasets: COCO and KITTI. These datasets are extensively
used for object detection tasks due to their comprehensive annotations
and relevance to real-world scenarios. The evaluation focuses on key
performance metrics, including accuracy, precision, and detection time,
providing a detailed understanding of the capabilities and limitations of
each YOLO variant.

5.1. Applications of YOLO variants in autonomous driving

Numerous variants of the YOLO algorithm have been developed,
each with unique features, strengths, and limitations. This study surveys
and summarizes previous works that leverage YOLO variants for appli-
cations focused on lane detection and autonomous driving. However,
not all methods, especially those involving lane change manoeuvres, are
relevant to similar applications. Limited studies specifically address
YOLO applications for autonomous lane changes and manoeuvres. Some
research has categorized vision-based lane detection into two-step and
one-step methods (Jigang Tang and Liu, 2021), while Peiyuan Jiang
(Peiyuan Jiang et al., 2021) highlighted differences and similarities
between YOLO versions and other CNNs.

YOLOvV3 remains one of the most widely utilized versions in AVs.
Studies by Phat Nguyen Huu (Phat Nguyen Huu and Tong Thi Quynh,
2022), Mohanapriya (Mohanapriya et al.), Wei Yang (Wei Yang et al.,
2020), Xiang Zhang (Xiang Zhang et al., 2018), and Zheng (Ji and
Zheng, 2021) applied YOLOv3 to detect lanes and obstacles with high
mAP. These works demonstrated improvements in detection accuracy
and real-time performance by adjusting network layers and detection
scales, though they often overlooked brightness variation effects on
detection accuracy. Edward Swarlat Dawam (Edward Swarlat Dawam,
2020) trained YOLOv3 with over 25,000 images to robustly detect 25
road surface marking classes, while Mehdi Masmoudi (Mehdi Masmoudi
et al., 2021) applied YOLOv3 in an end-to-end vehicle-following
framework to identify leading vehicles and obstacles. Zillur Rahman
(Zillur Rahman and Ullah, 2020) employed YOLOv3 to detect vehicles
traveling the wrong way under various weather and lighting conditions.

YOLOV3 also excels in real-time localization for collision avoidance.
Its applications include subclass traffic sign detection (M and Ghantous,
2022; Kahlil Muchtar and Nasaruddin, 2020; Mario Gluhakovi¢ et al.,
2020), extreme weather vehicle detection (Udaya Mouni Boppana et al.,
2022), and highway vehicle tracking (Kahlil Muchtar and Nasaruddin,
2020; William Chin Wei Hung et al., 2022). Liberios Vokorokos (Liberios
Vokorokos et al., 2020) demonstrated YOLOv3's capacity for limited
colour detection, suggesting enhancement with histograms and
advanced image recognition techniques. While YOLOv3 offers superior
frame processing speed, studies note its limitations in computational
complexity and processing memory demands (Mehdi Masmoudi et al.,
2019; Deshpande and Herunde, 2020).

YOLOvV4 introduced architectural enhancements, making it suitable
for diverse AV applications. Irvine Valiant Fanthony (Irvine Valiant
Fanthony et al., 2021) identified Tiny YOLOv4 as highly compatible
with real-time object detection for electric AVs, while Huibai Wang
(Huibai Wang, 2020) and Ghantous (M and Ghantous, 2022) employed
it for traffic light detection and classification, achieving distance esti-
mation but relying on dataset robustness. Ercan Avsar (Ercan Avsar,
2022) recommended YOLOV4 for detecting, counting, and tracking ve-
hicles in roundabout videos, while Wen Boyuan (Wen Boyuan, 2020)
applied it to pedestrian detection with favourable results. Donghao Qiao
(Donghao Qiao, 2020) compared YOLOv4 and Faster R-CNN, finding
YOLOV4 superior in speed and accuracy (68 fps). Asif Hummam Rais
(Asif Hummam Rais, 2021) integrated YOLOv4 with Kalman filters for
vehicle speed estimation in video streams, addressing class distinction
issues. Dewi et al. (2022) applied SPP to enhance YOLOv4 for feature
extraction, achieving state-of-the-art mAP and BFLOPS metrics.

Challenges persist in enhancing YOLO-based autonomous lane
detection. High computational costs, limited dataset generalization, and
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inference rate complications hinder advancements without sacrificing
accuracy. Phat Nguyen Huu (Phat Nguyen Huu and Tong Thi Quynh,
2022) suggested exploring semi-supervised learning, meta-learning, and
neural architecture search to improve detection. While YOLOv3 offers
robust performance, its complexity necessitates research toward light-
weight, accurate models like YOLOv4. Although some studies claim
Support Vector Machines (SVMs) outperform YOLO in accuracy, YOLO's
speed advantage often makes it the preferred choice for AVs (Mehdi
Masmoudi et al., 2021).

Detection rates improve significantly with YOLOvV5, as Teena Sharma
(Teena Sharma et al., 2022) demonstrated by training it on diverse
datasets for car, traffic light, and pedestrian detection in various weather
conditions. Studies also revealed that modifying YOLOV5's anchors and
structural elements enabled better detection of larger, blurred, or
smaller objects without compromising inference time (Yunfan Chen
et al., 2022; Prithwish Sen and Sahu, 2022; Aduen Benjumea et al.,
2020; Shen Zheng et al., 2021). Wibowo et al. (2023) enhanced YOLO
for dense urban traffic, focusing on crowded condition detection.
Chaudhry (2024) introduced SD-YOLO- Adaptive Weighted Dense
Network (AWDNet), a hybrid approach to tackle adverse weather
detection challenges, while Ren et al. (2024) developed Dilated Con-
volutional Weighting (DCW)-YOLO with dynamic convolutional
weighting for diverse road scenarios.

Recent advancements include Ozcan et al.'s (Ozcan et al., 2024)
metaheuristic-optimized YOLO for adverse weather and Li et al.'s (Li
etal., 2024) YOLO- Adaptive Lightweight Precision Hybrid Architecture
(ALPHA), emphasizing precision and efficiency for real-time applica-
tions. Khan et al. (2024) applied YOLO to pothole detection, achieving
practical results for poorly maintained roads. These advancements
highlight YOLO's versatility and ongoing relevance in addressing AV
challenges.

5.1.1. Advancements in YOLO-based traffic monitoring systems

YOLO-based algorithms have emerged as a cornerstone for traffic
monitoring systems due to their ability to perform real-time object
detection with high accuracy and efficiency. These algorithms have
applications spanning various domains of intelligent transportation,
including vehicle recognition, traffic sign detection, signal optimization,
and monitoring complex traffic environments. Recent advancements in
YOLO-based methods have aimed to enhance their performance in
diverse and challenging scenarios, such as urban mixed traffic, adverse
weather conditions, and large-scale aerial monitoring.

Imanuel et al. (2024) provide a comprehensive review of YOLO's
evolution and its implementation across different domains, emphasizing
its real-time performance, high detection accuracy, and adaptability to
various applications. Mistry and Degadwala (Mistry and Degadwala)
proposed a customized YOLO framework tailored to improve multi-type
vehicle recognition. Their approach yielded significant improvements in
precision and recall, surpassing standard YOLO models. Similarly, Song
et al. (2023) introduced Multi-scale Efficient Backbone (MEB)-YOLO,
optimized for detecting vehicles in complex traffic scenarios by
addressing occlusion and vehicle overlap, which are common challenges
in urban environments.

Flores-Calero et al. (2024) systematically reviewed traffic sign
detection and recognition using YOLO, highlighting the algorithm's
adaptability to varying lighting and weather conditions. They demon-
strated the potential of advanced pre-processing techniques to detect
less distinct traffic signs. Wang and Yu (Wang and Yu) enhanced
YOLOv4's feature extraction capabilities for improved detection in
challenging visual environments. In intelligent traffic systems, Kalva
et al. (Kalva et al.) developed a scalable, real-time monitoring system by
integrating YOLO with deep learning techniques for urban applications.
Sravanthi et al. (Sravanthi et al.) utilized YOLOv8 to dynamically con-
trol traffic signal durations based on real-time vehicle detection, show-
casing its potential for optimizing traffic flow.

For aerial imagery applications, Ali and Jalal (Ali and Jalal)
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employed YOLO for vehicle detection and tracking, integrating centroid
tracking for continuity in dynamic settings. Zhou et al. (2023) tailored
YOLO for urban mixed traffic, enhancing its capabilities to detect
diverse participants like bicycles and pedestrians. Tang et al. (2024)
introduced YOLO-Fusion, integrating YOLO with IoT frameworks for
advanced detection in smart transportation systems. This method
demonstrated enhanced performance in complex traffic environments
by combining sensor and visual inputs. Varshney et al. (Varshney et al.)
extended YOLOv8 for long-distance video streaming detection,
providing scalable solutions for intelligent traffic monitoring.

Challenges in YOLO-based traffic monitoring primarily arise from
environmental conditions, computational demands, and dataset limita-
tions. Factors like adverse weather, occlusions, and overlapping objects
impact detection accuracy, while high computational requirements
hinder real-time performance on resource-constrained devices. Limited
datasets restrict generalization across varied traffic scenarios, affecting
performance in settings such as rural roads and highways. Addressing
diverse traffic participants like cyclists and pedestrians in mixed traffic
remains an ongoing challenge. Moreover, adversarial vulnerabilities and
integration issues with IoT frameworks underscore the need for robust,
scalable, and secure solutions to advance YOLO-based traffic monitoring
systems.

5.1.2. Addressing adversarial vulnerabilities in YOLO-based autonomous
vehicle systems

Adversarial perturbations present a significant challenge to the
reliability and accuracy of YOLO-based object detection systems in
autonomous vehicles. These subtle, often imperceptible modifications
can deceive detection models, causing errors in object recognition and
jeopardizing decision-making processes. This section examines the vul-
nerabilities of YOLO detectors to adversarial attacks and reviews the
defensive strategies developed to mitigate these risks.

Choi and Tian (Im Choi and Tian) highlighted the susceptibility of
YOLO-based systems to adversarial attacks, including both digital and
physical adversarial examples. Their analysis demonstrated that such
attacks could lead to misclassification or complete evasion of objects,
undermining the reliability of perception systems in autonomous vehi-
cles. Similarly, Wu (2024) explored practical adversarial attack strate-
gies, emphasizing the challenges of detecting and mitigating such
attacks in real-world scenarios.

Jia et al. (2022) conducted experiments on traffic sign recognition
systems to demonstrate how physical adversarial examples, such as
stickers or camouflage, could manipulate YOLO-based models. These
perturbations were effective under varying lighting and environmental
conditions, underscoring the need for robust defence mechanisms. Jiang
et al. (2023) extended this research by evaluating the physical-world
robustness of YOLO detectors for vehicle detection. They introduced
simulation environments to test adversarial examples and proposed
enhancements to YOLO's training pipeline to improve robustness.

Defensive strategies against adversarial perturbations have also been
explored. Liang et al. (2024) investigated adversarial patch attacks and
proposed mechanisms such as adversarial training and patch-based
shielding techniques. Their findings demonstrated that integrating
these defences significantly improved YOLO's reliability in dynamic
driving environments. Li et al. (Li et al.) proposed a simulation-based
framework for detecting object-evasion attacks on YOLO detectors. By
integrating adversarial detection mechanisms into the YOLO pipeline,
their method effectively identified and mitigated evasive adversarial
objects, improving detection accuracy in autonomous driving contexts.

Despite advancements in addressing adversarial vulnerabilities,
challenges remain. YOLO-based algorithms must balance computational
efficiency with robustness against adversarial attacks. Future research
should focus on integrating adversarial training, simulation-based de-
fences, and real-world validations to enhance YOLO models' ability to
operate reliably in adversarial environments. Additionally, efforts
should be directed toward improving the detection of physical
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adversarial examples and developing proactive defence mechanisms
that can adapt to evolving threats.

By addressing these challenges, YOLO-based systems can be made
more resilient, ensuring the safety and reliability of autonomous vehicle
operations in complex and adversarial scenarios.

5.1.3. YOLO-based vehicle identification, speed estimation and tracking
algorithm for autonomous vehicles

Vehicle identification, speed estimation, and tracking are pivotal
components in the development of autonomous vehicle systems,
ensuring safe navigation and compliance with traffic regulations. YOLO-
based algorithms have emerged as a powerful tool in these applications
due to their real-time object detection and tracking capabilities. This
section reviews recent advancements in YOLO-based techniques for
these tasks.

YOLO's high accuracy and speed have significantly advanced vehicle
identification. Farid et al. (2023) proposed a YOLO-based detection
method optimized for unconstrained environments, demonstrating the
algorithm's ability to accurately detect vehicles in diverse scenarios.
Similarly, Pemila et al. (2024) combined YOLO with machine learning
classifiers to achieve real-time vehicle classification across extensive
datasets, addressing the complexities of mixed traffic. Rani et al. (2024)
introduced Lightweight Vision (LV)-YOLO, a system that integrates
vehicle detection with logistic speed estimation and counting, show-
casing YOLO's versatility in multi-task scenarios.

Accurate speed estimation is essential for collision avoidance and
traffic management. Do et al. (Do et al.) presented an algorithm for
estimating the speed of fast-moving vehicles in intelligent transportation
systems, achieving high accuracy by integrating YOLO with advanced
data processing techniques. Cvijeti¢ et al. (Cvijeti¢ et al.) combined
YOLO with a 1D convolutional neural network (1D-CNN) for vehicle
speed estimation, demonstrating its efficacy in real-time applications.
Lin et al. (2021) developed a system using virtual detection zones and
YOLO to simultaneously count, classify, and estimate vehicle speeds,
underlining its potential in urban traffic monitoring.

YOLO-based algorithms have shown considerable promise in vehicle
tracking applications. Samsuri and Nazri (Samsuri and Mohd Nazri)
developed a deep learning-based visual tracking system for traffic flow
monitoring, highlighting YOLO's effectiveness in real-time surveillance.
Soma et al. (Soma et al.) employed YOLOv8 for real-time vehicle
tracking and speed estimation, emphasizing the efficiency of advanced
YOLO iterations in handling dynamic traffic environments. Yass and
Faris (2023) reviewed YOLO-based techniques for tracking vehicles and
addressing wrong-way driving scenarios, demonstrating YOLO's critical
role in enhancing road safety through reliable tracking systems.

Several studies have explored multi-modal approaches that integrate
vehicle tracking and speed estimation. Prajwal et al. (Prajwal and
Kumar) proposed a multi-vehicle tracking model using deep learning,
demonstrating scalability across multiple vehicle types and speeds.
Prathap et al. (Prathap et al.) highlighted advancements in tracking
systems by combining YOLO for object detection with additional layers
for speed prediction, illustrating the adaptability of YOLO frameworks
in complex traffic scenarios.

Despite the successes of YOLO-based algorithms, challenges persist.
Chen et al. (2021) observed that variations in video resolution and UAV
altitude affect tracking accuracy, necessitating adaptive models. Simi-
larly, Vela et al. (Vela et al.) emphasized the importance of lightweight
models to ensure computational efficiency in urban scenarios. Future
research must focus on improving model robustness, integrating
multi-modal data, and optimizing YOLO frameworks to operate effec-
tively in resource-constrained environments. Addressing these chal-
lenges will further enhance YOLO's applications in vehicle
identification, speed estimation, and tracking, solidifying its role in
autonomous vehicle systems.
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5.2. Case studies: YOLO variants in object detection

Two widely used datasets for evaluating YOLO algorithms are COCO
and KITTI. The COCO dataset is a large-scale benchmark designed for
object detection, segmentation, and captioning. It includes a diverse
collection of images with detailed object annotations, making it ideal for
training and evaluating object detection models (Kim, 2019). In
contrast, the KITTI dataset focuses on autonomous driving and computer
vision tasks. It features high-resolution images annotated for object
detection and tracking, making it particularly suitable for applications
related to self-driving vehicles (Geiger and Lenz, 2013).

The performance of YOLO algorithms depends significantly on the
datasets used for evaluation, as there is no single unified dataset for
benchmarking. As a result, algorithm performance must be assessed in
the context of the dataset employed in each study.

This section examines six YOLO models applied to object detection
tasks using the COCO and KITTI datasets. Both datasets are popular
benchmarks in this domain, enabling researchers to evaluate and
compare algorithm performance.

For the COCO dataset, as illustrated in Fig. 5, YOLOv11 demonstrates
the highest accuracy and precision, followed closely by YOLOv10 and
YOLOV9. These models show considerable improvements in both met-
rics compared to earlier YOLO iterations, reflecting advancements in
feature extraction and detection algorithms. Similarly, on the KITTI
dataset, as shown in Fig. 6, YOLOv11 again achieves superior perfor-
mance, with YOLOv10 and YOLOv9 maintaining their strong perfor-
mance in accuracy and precision.

While YOLOv11, YOLOv10, and YOLOVO9 lead in terms of detection
performance, other YOLO versions also perform acceptably across
various object detection tasks. Incremental improvements in precision
and accuracy are observed in newer YOLO variants, underlining the
ongoing enhancements in the algorithm's architecture and capabilities.

6. Challenges in advancing YOLO for lane detection and
manoeuvres in AVs

Advancing YOLO's application for lane change detection and ma-
noeuvres in AVs requires addressing several pressing challenges. Despite
the significant progress in YOLO-based methodologies, there are areas
that demand focused research to enhance their adaptability, accuracy,
and robustness. The following challenges outline the key areas for
improvement:

1. Adaptability to Diverse Driving Conditions: YOLO algorithms,
while effective, need further optimization to handle a wide range of
variabilities in vehicle environments, including irregular lane
shapes, inconsistent line quality, and interactions with other road
users. A comprehensive comparative study of YOLO variants, such as
YOLOvV4, YOLOV6, and YOLOV7, under varying driving conditions is
essential. Research should include tuning hyperparameters to iden-
tify and manage extreme cases. Hybridizing architectures of these
YOLO versions can improve detection and classification in dynamic
AV environments, particularly for different traffic and road
conditions.

2. Enhancing Lane Detection Accuracy: Improving YOLO-based lane
detection algorithms in complex scenarios remains a priority. Ac-
curate detection requires robust handling of irregular spatial re-
lationships and occlusions. Enhancements in training methodologies,
such as employing larger datasets of labelled images, are necessary.
Transitioning to advanced YOLO versions like YOLOv6 and YOLOV?7,
rather than relying on older models like YOLOvV3, could yield better
performance. Additionally, implementing a scoring metric to detect
potential misclassifications in AV perception algorithms can help
ensure error-free decision-making in critical real-world scenarios.

3. Optimization of YOLOVS for Lane Detection: Focused research on
the YOLOVS architecture is crucial to further refine its algorithm for
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Fig. 5. Comparison of accuracy and precision across different YOLO versions
evaluated on the COCO dataset.

enhanced lane detection. This includes optimizing key parameters
and training procedures to improve its accuracy and efficiency. By
fine-tuning these aspects, researchers can push YOLOvVS8's perfor-
mance boundaries, particularly in addressing the unique challenges
posed by AV lane detection tasks.

4. Establishment of Universally Acceptable Datasets: The lack of
globally standardized datasets tailored to YOLO algorithm training
for diverse road environments is a critical challenge. These datasets
must encompass variations in road users, lane structures, and traffic
signs across different geographical regions. Creating such universal
datasets will enable the development of robust, adaptable algorithms
that can be integrated seamlessly by AV manufacturers worldwide.
Standardized datasets will not only improve YOLO's detection ca-
pabilities but also ensure consistency and reliability in global AV
applications.

Addressing these challenges will significantly enhance YOLO's effi-
cacy in autonomous vehicle applications, paving the way for safer and
more reliable AV systems in real-world environments.

7. Discussion

This section critically examines the findings presented throughout
the paper, offering a synthesis that moves beyond descriptive accounts
of YOLO-based algorithms to a deeper evaluative perspective. By
comparing different YOLO variants, analysing their performance across
multiple datasets, and identifying persistent limitations, we contextu-
alize their capabilities within the broader landscape of autonomous
vehicle (AV) perception and outline strategic directions for advancing
this technology.

7.1. Critical analysis of YOLO's role in AV lane detection and manoeuvres

The YOLO family of algorithms has demonstrated substantial
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Fig. 6. Comparison of accuracy and precision across different YOLO versions
evaluated on the KITTI dataset.
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progress in real-time object detection, enabling autonomous vehicles to
identify and classify vehicles, pedestrians, traffic signs, and lane markers
with increasing accuracy and speed (Hrag-Harouth Jebamikyous, 2022;
Ercan Avsar, 2022; Harisankar.R; Mehdi Masmoudi et al., 2019; Jigang
Tang and Liu, 2021; Peiyuan Jiang et al., 2021). Compared to tradi-
tional, multi-stage detectors like R-CNN variants (Fast/Faster R-CNN
and Mask R-CNN), YOLO's single-stage approach reduces latency and
computational overhead, making it particularly appealing for AV ap-
plications where prompt decision-making is crucial. However, despite
these gains, current YOLO algorithms still face difficulty when con-
fronted with challenging real-world conditions. For instance, detecting
subtle or degraded lane markings, coping with variable lighting and
weather conditions, and handling occlusions or highly cluttered scenes
remain non-trivial (Mohanapriya et al.; Cheng Han et al., 2022; Mahaur
and Mishra, 2023; Phat Nguyen Huu and Tong Thi Quynh, 2022; Wei
Yang et al., 2020; Xiang Zhang et al., 2018).

In addition, while newer YOLO versions (e.g., YOLOv8, YOLOV9,
YOLOvV10, and YOLOv11) and customized variants (e.g., MAD-YOLO,
RDD-YOLO, YOLO-CIR) have pushed the frontiers of speed and accu-
racy, these improvements often come at the expense of increased model
complexity or remain narrowly focused on specific tasks (Jinjie Zhou
et al., 2023; Mahaur and Mishra, 2023; Xianchong Xu et al., 2023). Thus,
the existing literature collectively illustrates a scenario where incre-
mental advancements in architecture and training protocols yield better
performance but do not fully address fundamental challenges that
hinder robust, scalable AV deployment.

7.2. Identified gaps and limitations in existing research

A notable gap is the lack of universal, representative datasets
covering the full spectrum of road conditions, infrastructure types, and
cultural driving practices. Many studies benchmarked their YOLO
models on standard datasets such as COCO and KITTI (Peiyuan Jiang
etal., 2021; Kim, 2019; Geiger and Lenz, 2013), which, although widely
accepted, may not capture the diversity of real-world roadway envi-
ronments. This limitation constrains model generalizability and may
cause YOLO-based AV systems to underperform when introduced to
unfamiliar geographic regions or unusual traffic scenarios.

Moreover, current YOLO models struggle with adversarial robust-
ness. Several works have demonstrated the susceptibility of YOLO-based
detectors to adversarial perturbations—subtle modifications to the input
images that lead to misclassifications or missed detections (Im Choi and
Tian; Jia et al., 2022; Wu, 2024; Jiang et al., 2023; Li et al.; Liang et al.,
2024). Such vulnerabilities pose serious safety concerns for AVs and
emphasize the need for more secure and resilient model architectures
and training techniques.

Another key limitation is the balancing act between detection ac-
curacy and computational efficiency. While YOLO excels in speed,
pushing the boundaries of accuracy—especially for small objects,
distant road signs, or intricate lane configurations—often demands
additional layers, complex backbones, or more computational power.
Such trade-offs can impede deployment on resource-constrained plat-
forms and limit the algorithm's scalability in large-scale, real-time AV
fleets (Mehdi Masmoudi et al., 2019, 2021; Khan et al., 2024; Zillur
Rahman and Ullah, 2020).

7.3. Comparisons and key findings

Comparative analyses of YOLO variants show that while incremental
architectural improvements (e.g., CSPDarknet backbones in YOLOv4,
anchor-free heads in YOLOVS, or gradient enhancements in YOLOv10
and YOLOv11) lead to measurable gains, no single version consistently
outperforms all others across every metric and scenario (Mehdi Mas-
moudi et al., 2019; Abhishek Sarda and Anupama Bhan; Yingfeng Cai
et al.,, 2021; Rui Wang et al., 2021). For example, some YOLO versions
excel in ideal lighting conditions yet falter under extreme weather, while
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others are optimized for detecting certain object classes at the expense of
general-purpose flexibility.

These comparisons highlight the need for adaptive and context-
aware detection strategies. It is evident that YOLO-based algorithms
must be more than just universally fast—they must be adaptable, robust,
and capable of maintaining performance standards across a wide range
of real-world challenges.

7.4. Practical and theoretical implications

Practically, the findings suggest that while YOLO can form the
backbone of AV perception systems, it remains insufficient as a stand-
alone solution. AV manufacturers and researchers need to consider
sensor fusion (e.g., incorporating LiDAR, radar, or thermal imaging) and
tailor training protocols to the vehicle's intended environment. This may
involve domain adaptation techniques, data augmentation strategies,
and extensive real-world testing regimes to ensure consistency and
safety in operation (Khayyam et al., 2020; Milani et al., 2020; Al-Saadi
et al., 2022; Mahaur and Mishra, 2023).

From a theoretical perspective, YOLO's evolution underscores the
importance of balancing model complexity with computational effi-
ciency and generalization capability. The trade-offs observed suggest
that further research is needed to develop unified frameworks that
seamlessly integrate multi-modal input streams and advanced loss
functions while maintaining real-time performance. Additionally,
adversarial training and the integration of simulation-based defences
will be crucial in fortifying YOLO models against emerging security
threats.

7.5. Professional opinions and suggested directions for improvement

Based on the evidence and analyses reviewed, several pathways
emerge for improving YOLO-based solutions in AV perception:

1. Enhanced Training Paradigms: Adopting meta-learning and neural
architecture search can automate the discovery of optimal hyper-
parameters, loss functions, and model architectures. Semi-supervised
learning methods may also help in leveraging large volumes of
unlabelled, real-world driving data to improve robustness
(Mondschein et al., 2006; Edward Swarlat Dawam, 2020; Yu et al.,
2018).

2. Universal Datasets and Benchmarking Standards: There is a
pressing need for globally representative, standardized datasets that
encompass varying lane types, road conditions, weather scenarios,
and cultural norms. Such datasets would enable more meaningful
cross-comparisons and reliable generalization of YOLO-based models
(Mohanapriya et al.; Mahaur and Mishra, 2023; Phat Nguyen Huu
and Tong Thi Quynh, 2022; Wei Yang et al., 2020; Xiang Zhang et al.,
2018).

3. Multi-Modal Sensor Fusion: Integrating camera-based YOLO
detection with complementary sensors can improve detection reli-
ability under adverse conditions. Combining LiDAR or radar with
YOLO can mitigate vision-only weaknesses, enhancing the model's
accuracy in poor visibility or high-occlusion environments (Song
et al., 2024; Wang et al., 2024a; Appiah and Mensah, 2024; Silva
et al.).

4. Adversarial Resilience and Safety-Centric Design: Strengthening
YOLO's adversarial resilience through adversarial training, robust
simulation platforms, and real-time anomaly detection is essential.
Future research could focus on designing specialized YOLO variants
or pre-processing modules that detect and neutralize adversarial
perturbations.

5. Architectural Hybridization and Efficiency Optimization:
Incorporating promising features from YOLOv4, YOLOv7, and
YOLOVS (e.g., anchor-free heads, refined attention mechanisms) into
hybrid architectures could yield models that strike an improved
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balance between speed, accuracy, and robustness. Lightweight
optimization techniques and hardware acceleration strategies should
also be explored to accommodate diverse AV platforms.

8. Conclusion

This comprehensive review was conducted following a systematic
and transparent methodology, encompassing a broad literature search
across reputable databases, well-defined inclusion and exclusion
criteria, and the application of a conceptual framework to categorize,
compare, and critically assess the performance of YOLO algorithms in
autonomous vehicle (AV) contexts. By integrating both foundational and
recent studies, this approach ensured a balanced and in-depth exami-
nation of YOLO's evolution, capabilities, and shortcomings. Our analysis
revealed that YOLO algorithms excel in providing real-time object
detection and lane identification, offering substantial promise for
improving AV lane-change manoeuvres and overall navigation. How-
ever, persistent gaps hinder the full realization of YOLO's potential.
These include difficulty in accurately detecting subtle or irregular lane
markings, limited robustness to adverse environmental factors (e.g.,
variable lighting, occlusions, and adverse weather), and vulnerabilities
to adversarial attacks. In addition, the lack of universally representative
datasets restricts YOLO's scalability and generalizability across diverse
geographical and traffic conditions. Furthermore, issues such as
balancing accuracy with computational efficiency remain pressing,
especially for resource-constrained AV systems. By synthesizing these
findings, this paper highlights YOLO's current limitations and the
attendant need for strategic improvements. The contributions of this
review extend beyond cataloging existing algorithms and their perfor-
mance. We have provided a comparative evaluation, identified critical
challenges, and proposed avenues for enhancement. Such recommen-
dations include refining YOLO's architectures—potentially by
leveraging and hybridizing YOLOv4, YOLOv7, and YOLOv8—to better
handle complex and dynamic road environments. Introducing advanced
training methodologies, sensor fusion, and hyperparameter tuning, as
well as developing global, standardized datasets, can significantly
bolster detection accuracy and robustness. Implementing adversarial
training and other defensive strategies will further strengthen YOLO's
resilience against attacks. In essence, this comprehensive review not
only spotlights the strengths and limitations of YOLO algorithms but also
provides actionable guidance for future research and practical deploy-
ment. By addressing the highlighted gaps and refining YOLO's capabil-
ities, the vision of safe, efficient, and widely scalable autonomous
navigation can move closer to reality, making YOLO a cornerstone
technology in next-generation AV systems.
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