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Abstract
In this research work, a nondestructive technique of image analysis was explored to deter-
mine the fibre orientation and void content in Bagasse fibre reinforced composites. Fibre 
length, alkali treatment and fibre loading were studied as variables. The fibre orientation was 
irrespective of the fibre length, fibre loading and alkali treatment variables. The void content 
and size decreased with increases in fibre length and alkali treatment. The alkali treatment 
resulted in the removal of lignin, making the surface of the fibres rough. It also led to making 
the fibre count fine i.e. reducing the diameter of the fibres and thus presenting more fibres 
for interaction with resin. Both these phenomena resulted in a slower flow of resin. The void 
content of bagasse fibre composites decreased with higher fibre loading because a higher 
number of fibres slows the resin flow. However, the size i.e. area of the voids increased with 
the fibre loading from 20 to 30%, probably due to increased wetting difficulty. 
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a composite material. When a composite 
is manufactured as a laminate compris-
ing some layers in a reinforcement, the 
concept of fibre orientation at 0°, 45° and 
90° is considered to determine the effect 
of orientation on the tensile and flexural 
properties of such materials [7-9]. It is 
also important to determine the orienta-
tion of fibres in the length and widthwise 
directions in the case of textile material 
being used as reinforcement to manu-
facture a composite. The concept of an-
isotropy and random orientation are con-
sidered in [10-12]. The image analysis 
technique is a powerful tool to determine 
the orientation of fibres after the compos-
ites have been manufactured. A group of 
researchers determined the orientation 
of fibres in thermoplastic composites 
manufactured by injection moulding us-
ing a second order orientation tensor  
[13-16]. The technique of FFT is also 
used to determine the orientation of fi-
bres in composite materials. Images of 
samples are taken in the cross section, 
where the fibres appear in the form of cir-
cular or elliptical shapes. The orientation 
of each fibre is determined and the results 
averaged [17, 18]. 

Void content is one of the important qual-
ity parameters to be considered for man-
ufacturing composite materials. Voids 
are air bubbles entrapped within the rein-
forcement during the flow of resin. They 
are also caused by the reaction between 
the resin and the hardener. The voids are 
also caused because of the presence of 
moisture in the resin mixture [19-21]. It 
is important to investigate the phenom-

 Introduction
Composite materials based on natural fi-
bres are gaining a lot of interest because 
they are lighter in weight, produced from 
renewable resources and partially biode-
gradable as compared to their synthetic 
counterparts [1-3]. Composites manu-
factured from agricultural waste such 
as bagasse, coir banana and other fibres 
are giving us an opportunity to explore 
cheaper raw materials. These raw mate-
rials could be used as reinforcement to 
manufacture more value added products 
to help the agricultural economy [4-6].

Fibre orientation is one of the key pa-
rameters to determine the properties of 

enon of voids in composite material be-
cause their presence results in a reduction 
in tensile, flexural and inter-laminar shear 
properties. The presence of voids also in-
creases moisture absorption in composite 
material [22-25]. The common methods 
to determine the void content in compos-
ite material are based on removing the 
matrix material and determining the fibre, 
resin and void contents of the composite. 
However, these methods are destructive 
in nature and the resin is either burnt us-
ing a furnace or digested using the acid 
digestion method [26, 27]. Since we are 
dealing with bagasse fibre composites 
herein, we could not use methods such as 
ISO 1172 and ISO 11472 to determine the 
void content. However, some research-
ers have used the process of pyrolysis 
in a nitrogen environment to digest the 
resin and determined the fibre, resin and 
void contents [28]. The void content can 
also be determined by finding the ratio of 
theoretical density and measured density. 
But this method is partially destructive as 
it involves the interaction of water with 
the composite sample [24, 29, 30]. 

The non-destructive methods include 
image analysis, in which images of the 
cross section of the composite material 
are taken using microscopic techniques. 
Images can also be taken in the thickness 
direction [31-33]. Another non-destruc-
tive method is based on the use of the 
ultrasonic technique. In these methods 
the composite samples are scanned us-
ing ultrasonic rays; the presence of voids 
are detected with the help of these rays 
[25, 34].
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In this research work, bagasse fibres were 
used as reinforcement to manufacture 
composite material using epoxy as the 
matrix. Alkali treatment, fibre loading 
and fibre length variables were consid-
ered to determine the void content and 
fibre orientation of those composite ma-
terials. Alkali treatment was used to re-
move lignin from the surface of bagasse 
fibre; it was believed that the alkali treat-
ment would help to improve the interac-
tion between the resin and fibres [35, 36]. 
The non-destructive method of image 
analysis was used to determine the void 
content and fibre orientation in bagasse 
composites. The orientation of fibres was 
determined using the Fast Fourier Trans-
form (FFT) technique. 

 Materials and methods
Bagasse was obtained from a local sug-
arcane juice producer. It was dried in 
sunlight for 48 hours prior to the extrac-
tion of fibres manually using a knife and 
scrappers. The fibres were treated with 
alkali at 4, 6 and 8% for 24 hours, fi-
brewashed thoroughly and then dried at 
room temperature for 24 hours. Finally, 
they fibre were cut into lengths of 1, 2 
and 3 inches.

Epoxy resins Araldite LY 5052 and Ara-
dur Hardener HY 5052 were procured 
from Huntsman, Pakistan. These resins 
were used as matrix for manufactur-
ing bagasse fibre composites using the 
hand lay-up technique. The following 
variables were considered in the experi-
ments:
n Alkali treatment using different con-

centrations of alkali i.e. 4, 6 and 8%
n Fibre loading, i.e, 10 wt%, 20 wt% 

and 30 wt%

n Fibre length, i.e, 1 in, 2 in and 3 in.
During the process of manufacturing 
composites using hand the lay-up tech-
nique, it was observed that the fibres 
were strong enough to be handled. These 
fibres were cut into the desired length 
and spread manually as reinforcement to 
make bagasse composite material. 

The above-mentioned factors and their 
different levels implied that 27 different 
composite samples were required to be 
prepared if the full factorial experimen-
tal design was to be employed. However, 
the technique of Response Surface Meth-
odology (RSM) was used to reduce the 
number of samples to 15.

For each type of composite, five samples 
of 2 x 2 in2 were used to determine the 
properties. To determine fibre orientation 
and void content, image analysis was car-
ried out using a motic stereo microscope 
– Model DMW-143. Eight [8] images 
were acquired for each sample at 15X 
magnification in the transmittance mode.

Fibre orientation
In the field of composite manufactur-
ing, fibre orientation is one of the more 
important properties. If a composite is 
anisotropic, its properties will vary in 
the length-wise and width-wise direc-
tions. The following method was used 
to determine the fibre orientation of ba-
gasse fibre composites using ’Image J’ 
software. The images of the composite 
samples acquired were reduced to the 
size of 512 x 512 pixels. Using the tools 
available in image J software, the RGB 
image was converted to a grey scale 
one. The contrast of the grey scale im-
age was enhanced using the Enhance 
Contrast tool of the software to make 
the fibres more prominent. The output 
of this step is exemplarily shown in Fig-
ure 1.a. The images were calibrated at 
80 pixels per mm to obtain an image of 
6.4 x 6.4 mm2. The Fast Fourier Trans-
form i.e. FFT of the image was obtained 
using the FFT tool available in the im-
age J software. The FFT of the image 
represents a distribution of points i.e. the 

Figure 1. Procedure for determination of fibre orientation: a) grey scale image of 512 x 
512 pixels and b) FFT of the image. 
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reduced to the size of 512 x 512 pixels, as shown in Figure 1(a). Using the tools available in  
image J software, the RGB image was converted to a grey scale one. The contrast of the grey 
scale image was enhanced using the Enhance Contrast tool of the software to make the fibres
more prominent. The output of this step is exemplarily shown in Figure 1(b). The images were 
calibrated at 80 pixels per mm to obtain an image of 6.4 x 6.4 mm2. The Fast Fourier Transform 
i.e. FFT of the image was obtained using the FFT tool available in the image J software. The 
FFT of the image represents a distribution of points i.e. the distribution of  fibres in the 
composite sample. A circle of 7.54 mm circumference was drawn around the points of the FFT,  
shown in Figure 1(c). Using the oval profile tool available in the software, the distribution of 
points along the circumference of the circle was plotted in terms of angle (00 to 3600) on the x-
axis and the grey level (intensity) on the y-axis, shown in Figure 2(a). The graph which is 
obtained from the software represents the distribution of  fibres in the composite sample. These 
results were interpreted graphically using excel, as exemplified in Figure 2(b). 

(a) (b) (c)
Figure 1: Procedure for determination of fibre orientation: (a) original image, (b) grey 

scale image of 512 x 512 pixels, and (c) FFT of the image. 

(a) (b)
Figure 2: Data processed in Excel: (a) fibre distribution from software and (b) graphical 

representation of fibre distribution. 

2.2 Void content

Void content is also one of the important characteristics for a composite material because it has a 
direct impact on the mechanical properties of the final product. The following procedure was 
adopted to determine the void content of the composite samples. Using the image J software, the 
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distribution of fibres in the composite 
sample. A circle of 7.54 mm circumfer-
ence was drawn around the points of the 
FFT, shown in Figure 1.b. Using the oval 

Figure 3. Procedure for determination of void content: a) original image, b) grey scale and 
enhanced contrast image, c) image after segmentation and d) image of the voids.
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The orientation of fibres in the composite samples was determined for all the 15 categories i.e. 
from Sample A to O, manufactured in such a way that all the factors and their levels,  mentioned 
in the section ‘Materials & Methods’, were taken into account.  

The Fast Fourier Transform FFT of some of the selected fibre networks is shown in Figure 4, and
graphs obtained from the software comparing the distribution of fibres along the circumference 
are shown in Figure 5. The graphical representation obtained using excel is shown in Figure 6. 

Sample A Sample D Sample G

Sample J Sample M Sample O
Figure 4: FFT images for selected categories

In order to find the fibre orientation i.e. the distribution of fibres, the Fast Fourier Transform 
(FFT) for the images of different composite samples was obtained using the FFT tool of the 
image J software, as outlined in Section 2.1. In Figure 4,  FFT images for the composite samples 
of some selected categories are shown. The FFT of the images gives a distribution of points. It 
was observed that the distribution of points did not show any specific pattern, therefore we can 
say that the fibres were randomly oriented.   
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The orientation of fibres in the composite samples was determined for all the 15 categories i.e. 
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in the section ‘Materials & Methods’, were taken into account.  
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original RGB image (Figure 3a) was converted to a grey scale image, as shown in Figure 3(b). 
The contrast of the image was enhanced using the Enhance Contrast tool, which was also used to 
normalise and equalise the histogram to facilitate the separation of objects in the images. There 
are three distinctive features in the image i.e. fibres, voids, and  spaces (pores) between the fibres
in the composite samples. The contrast was enhanced to separate the pores (white area) and 
“fibres and voids”, shown in Figure 3(b). The image was calibrated at 80 pixels per mm and 
segmented to separate “fibres and voids” (black) from the pore area i.e. the spaces between  
fibres (white). An absolute threshold of 128 was chosen in this regard, shown in Figure 3(c).
Since we were interested in quantifying the voids, the fibres and voids were then separated on 
the basis of their area. Fibres  longer in length as compared to the voids had a larger area, 
therefore the objects having an area ranging between 0 mm2 and 2 mm2 were considered as 
voids. These voids were counted and the number of voids, void content as a percentage, and the 
area of voids in a square micrometre were determined.  

(a) (b)

(c) (d)
Figure 3: Procedure for determination of void content: (a) original image, (b) grey scale 
and enhanced contrast image, (c) image after segmentation, and (d) image of the voids. 
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scale image, as shown in Figure 3.b. 
The contrast of the image was enhanced 
using the Enhance Contrast tool, which 
was also used to normalise and equalise 
the histogram to facilitate the separation 
of objects in the images. There are three 
distinctive features in the image i.e. fi-
bres, voids, and spaces (pores) between 
the fibres in the composite samples. 
The contrast was enhanced to separate 
the pores (white area) and “fibres and 
voids”, shown in Figure 3.b. The im-
age was calibrated at 80 pixels per mm 
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and segmented to separate “fibres and 
voids” (black) from the pore area i.e. the 
spaces between fibres (white). An abso-
lute threshold of 128 was chosen in this 
regard, shown in Figure 3.c. Since we 
were interested in quantifying the voids, 
the fibres and voids were then separated 
on the basis of their area. Fibres longer 
in length as compared to the voids had 
a larger area, therefore the objects hav-
ing an area ranging between 0 mm2 and 
2 mm2 were considered as voids. These 
voids were counted and the number of 
voids, void content as a percentage, and 
the area of voids in a square micrometre 
were determined. 

 Results and discussion
Fibre orientation
The orientation of fibres in the compos-
ite samples was determined for all the 
15 categories i.e. from Sample A to O, 
manufactured in such a way that all the 
factors and their levels, mentioned in 
the section ‘Materials & Methods’, were 
taken into account. 

The Fast Fourier Transform FFT of some 
of the selected fibre networks is shown in 
Figure 4, and graphs obtained from the 
software comparing the distribution of 
fibres along the circumference are shown 

in Figure 5. The graphical representation 
obtained using Excel is shown in Fig-
ure 6.

In order to find the fibre orientation i.e. 
the distribution of fibres, the Fast Fourier 
Transform (FFT) for the images of differ-
ent composite samples was obtained us-
ing the FFT tool of the image J software. 
In Figure 4, FFT images for the compos-
ite samples of some selected categories 
are shown. The FFT of the images gives 
a distribution of points. It was observed 
that the distribution of points did not show 
any specific pattern, therefore we can say 
that the fibres were randomly oriented. 
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From Figure 5 and Figure 6, it is evi-
dent that the orientation of fibres for all 
the samples did not show any particular 
trend. Therefore, it can be concluded that 
the orientation of fibres is random in the 
samples. The results also indicate that the 
orientation of fibres is independent of the 
variables i.e. alkali treatment, fibre length 
and fibre loading and that the hand lay-
up technique resulted in a truly random 
distribution of fibres. This is in line with 
available literature, according to which 
in a nonwoven material the orientation 
of fibres is independent of treatment vari-
ables and is only dependent on the meth-
od of manufacturing [15]. 

Void content
The void content percentage and void 
area in square micrometres were deter-
mined using the method explained in the 
previous section. The effect of different 
variables, such as alkali treatment, fibre 
loading and fibre length on void content 
and void area was compared using the 
RSM technique. Results for the compari-
son are shown in Figure 7 and Figure 8.

The results presented in Figure 7 show 
that with an increase in alkali treatment, 
the void content decreased. This could be 
attributed to the removal of lignin from 
the surface of the fibres, as a result of 

which the fibre diameter decreased and, 
consequently, more fibres were packed 
in a given volume of the composite. It is 
well-known that the presence of a greater 
number of fibres increases the resistance 
to the flow of resin, resulting in a de-
crease in void content. 

Due to the increase in fibre length, the 
fibres offer more surface area for the 
resin to interact. This again is expected 
to slow down the flow of resin, hence 
there is a slight reduction in the void 
content. From the literature it is well-
known that as a result of the multiple 
layering of fibres or with an increase 
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Figure 7: Effect of different variables on void content in %

The results presented in Figure 7 show that with an increase in  alkali treatment, the void content 
decreased. This could be attributed to the removal of lignin from the surface of the fibres, as a 
result of which the fibre diameter decreased and, consequently, more fibres were packed in a 
given volume of the composite It is well-known that the presence of a greater number of fibres
increases the resistance to the flow of resin, resulting in a decrease in void content.  

Due to the increase in fibre length, the fibres offer more surface area for the resin to interact. 
This again is expected to slow down the flow of resin, hence there is a slight reduction in the 
void content. From the literature it is well-known that as a result of the multiple layering of fibres
or with an increase in the fibre volume fraction, the void content decreases. In conclusion, the 
reduced fibre diameter and increased fibre length are responsible for the decrease in  void 
content (26).  
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in the fibre volume fraction, the void 
content decreases. In conclusion, the re-
duced fibre diameter and increased fibre 
length are responsible for the decrease 
in void content [26]. 

Furthermore, the results presented in Fig-
ure 8 clearly depict that with an increase 
in alkali treatment and fibre length, there 
is a decrease in the area of the voids. This 
may be due to the slow flow rate and re-
sulting lower void content.

It can also be observed that with an in-
crease in fibre loading from 10 to 20%, 
the area of the void decreases. This is 
perhaps due to the slowdown in the flow 
rate of the resin. However, from 20 to 
30% the void area started to increase 
again. This may have been caused by the 
increased difficulty for the resin to wet 
a higher number of fibres. It was reported 
that the strength of bagasse fibre com-
posites decreases with an increase in the 
fibre content due to the improper wetting 
of the fibres by the resin [37, 38].

 Conclusions
From the results obtained in the present 
study, the following conclusions can be 
drawn.

The technique of image analysis can be 
successfully used to determine the fibre 
orientation and void content of bagasse 
fibre composites.

The orientation of fibres in most of the 
bagasse fibre composite samples made 
by hand lay-up is random.

The orientation of fibres is independent 
of variables such as alkali treatment, fibre 
length and fibre loading. 

Alkali treatment decreases the void con-
tent and size i.e. the area of the void be-
cause the flow of resin slows down. 

Increases in the fibre length also decrease 
the void content and size because longer 
fibres offer more area for the resin to in-
teract, resulting in a slower flow of resin 
during composite manufacturing.

Increases in fibre loading decrease the 
void content because a higher number 
of fibres also slows down the flow of 
resin during composite manufacturing. 
However, very high fibre loading may in-
crease the size (i.e. area) of voids because 
of increased wetting difficulty.
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