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Abstract: RGB-Thermal (RGBT) semantic segmentation is an emerging technology for
identifying objects and materials in high dynamic range scenes. Thermal imaging partic-
ularly enhances feature extraction at close range for applications such as textile damage
detection. In this paper, we present RGBT-Textile, a novel dataset specifically developed for
close-range textile and damage segmentation. We meticulously designed the data collection
protocol, software tools, and labeling process in collaboration with textile scientists. Addi-
tionally, we introduce ThermoFreq, a novel thermal frequency normalization method that
reduces temperature noise effects in segmentation tasks. We evaluate our dataset alongside
six existing RGBT datasets using state-of-the-art (SOTA) models. Experimental results
demonstrate the superior performance of the SOTA models with ThermoFreq, highlighting
its effectiveness in addressing noise challenges inherent in RGBT semantic segmentation
across diverse environmental conditions. We make our dataset publicly accessible to foster
further research and collaborations.

Keywords: RGB-Thermal dataset; textile damage detection; semantic segmentation

1. Introduction
The textile industry faces significant sustainability challenges [1], striving to reduce

textile waste and comply with global Net Zero goals [2,3]. The repair of clothing materials
to prolong the useful life of garments is indispensable in terms of reducing the environ-
mental impact [4]. Advanced machine learning methodologies, particularly in semantic
segmentation, are critical in the automation of damage detection and repair processes,
thereby fostering a more sustainable fashion industry. Semantic segmentation of RGBT
image frames is a highly pertinent task capable of identifying textile materials and damages
in dynamic range scenes. This task encompasses the categorization of garment regions
based on semantic content, alongside the identification of damage. However, there is
a conspicuous scarcity of dedicated and publicly accessible datasets [5–8] for this spe-
cific application, which hinders the development and evaluation of frameworks aimed at
addressing sustainability challenges.

In this paper, we present RGBT-Textile, a meticulously designed segmentation dataset
for the tasks of textile analysis and damage detection. The inception of our dataset is
influenced by contemporary RGBT segmentation methodologies [9–14] as well as existing
benchmark datasets. Through rigorous data collection and annotation, we have compiled
the RGBT-Textile dataset, which consists of 1441 RGBT images accompanied by ground-
truth segmentation masks. In Figure 1, we provide several exemplars from the RGBT-
Textile dataset, illustrating the alignment of RGB and thermal image frames alongside
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their corresponding segmentation labels. We evaluate the performance of state-of-the-art
RGBT semantic segmentation models using the proposed RGBT-Textile dataset, thereby
establishing a benchmark performance standard. Performance metrics extracted from
this dataset underscore the inherent complexity of detecting damages in textiles and
consequently contribute to sustainability goals related to the textile industry.

Figure 1. Sample RGB and thermal images with the corresponding segmentation masks from
the RGBT-Textile.

Integrating thermal infrared (TIR) images, which are insensitive to illumination vari-
ations, with visible light data is preferred in several challenging scenarios and high dy-
namic scenes, such as low illumination, fog, and rain [15–17]. In RGBT segmentation,
foreground–background differentiation and complementary information extraction are
primary challenges. Previous methods have used simple fusion techniques [18,19], while
attention-based approaches such as FEANet [20], CCFFNet [21], AFNet [22], and CMX [23]
have addressed these more effectively. However, issues such as sub-optimal differentiation,
computational overhead, and insufficient complementary information mining persist.

Normalization techniques are crucial for aligning the statistical properties of modal-
ities to ensure robust feature extraction and fusion. Traditional methods like Min-Max,
Mean-STD, and histogram-based normalization are widely used but face limitations: Min-
Max is outlier-sensitive, Mean-STD amplifies noise, and histogram approaches require
downstream task adaptation for thermal images [24]. However, when applied to thermal
images, such approaches require careful consideration of the downstream task [25]. To ad-
dress this challenge, this paper further proposes ThermoFreq, a frequency-domain thermal
normalization technique using Fourier transform to selectively adjust components based
on statistical distribution, which transforms an image into the frequency domain using
Fourier transform. The normalized images in the frequency domain are then transformed
back to the image space and used to train the models. ThermoFreq enhances thermal
characteristics, leading to the superior segmentation performance of the state-of-the-art
(SOTA) RGBT models in challenging scenarios.

In the following sections, we report our detailed data collection process and compare
SOTA RGBT segmentation models on existing datasets with and without ThermoFreq. Our
dataset and findings serve as a catalyst for future research initiatives, fostering collaboration
and innovation within the computer vision and textile garment repair community. Our
contributions are as follows:

• The RGBT-Textile dataset, a novel RGB-Thermal image dataset of textile materials
with damages, primarily for the segmentation of textile materials and damages along
with benchmarks and experimental results. The dataset is available at this download
link https://drive.google.com/drive/folders/1HLri3SDPHSY0AsAmaEloh_0Q13E9
1u2v (accessed on 28 March 2025).

https://drive.google.com/drive/folders/1HLri3SDPHSY0AsAmaEloh_0Q13E91u2v
https://drive.google.com/drive/folders/1HLri3SDPHSY0AsAmaEloh_0Q13E91u2v
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• The frequency-based thermal image normalization technique ThermoFreq, to selec-
tively adjust frequency components based on their statistical distribution, resulting in
improved segmentation performance of the RGBT models.

• Experiments with the SOTA RGBT segmentation models and benchmark datasets to
highlight the effectiveness of ThermoFreq in addressing temperature noise challenges.

2. Related Works
2.1. RGBT Datasets

Researchers have contributed several RGBT datasets that are highly valuable for devel-
oping and evaluating RGBT semantic segmentation algorithms. The KAIST Multispectral
Pedestrian Dataset [26] offers RGBT images captured under various ambient conditions,
supporting both object detection and semantic segmentation tasks. Similarly, the LLVIP
Dataset [27] provides RGBT images in different lighting conditions and supports object
detection, semantic segmentation, and recognition tasks. The MFNet Dataset [15] includes
multispectral RGBT images captured under various environmental conditions, as well as
supporting object detection and semantic segmentation. Additionally, the OSU Thermal
Pedestrian Database [28] contains RGBT images under various environmental conditions,
which aids in object detection and semantic segmentation. The PST900 Dataset [17], derived
from the DARPA Subterranean Challenge, includes thermal image pairs across four classes
and supports semantic segmentation tasks. These datasets collectively offer a compre-
hensive range of RGBT data, facilitating advances in semantic segmentation and other
vision-related tasks.

2.2. RGBT Segmetation Models

RGBT fusion methods have become prominent in computer vision for tasks such
as pedestrian detection, vehicle detection, semantic segmentation, detection of salient
objects, crowd counting, and fusion tracking. Notable advances include the Causal Mode
Multiplexer [29], Triple Flow Network [30], ICAFusion [31], Feature-guided pretraining [32],
and Fusion Architecture [33], which enhance detection performance through iterative cross-
attention and multimodal data fusion. In semantic segmentation, the best performing
models such as CRM_RGBT [34] and MMSFormer [11] have set new standards with their
unique architectures and masking mechanisms, leading to more accurate results [14].
Salient object detection and crowd counting have also seen improvements through better
fusion architectures and loss functions [9,35,36]. Fusion-based tracking methods leverage
RGBT data for robust performance in challenging lighting conditions [37]. These advances
underscore the importance of multimodal data for enhanced computer vision performance.
Inspired by these developments and to address challenges in garment damage detection,
we developed the proposed RGBT-Textile dataset as an RGBT dataset, detailed in Section 3.

3. RGBT-Textile Dataset
We present RGBT-Textile, an RGBT dataset designed for the detection of textile damage

through the semantic segmentation task. This dataset consists of 1441 pairs of RGB and
thermal images, each pair meticulously annotated with segmentation labels. These labels
categorize the data into three distinct classes: background, garment, and damage. In
Figure 1, we provide samples from the dataset, where the damaged area of a garment is
indicated in red, the intact garment is marked in blue, and the background is represented
in black.
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3.1. Data Collection Protocol and Setups

To acquire the dataset, garments were first screened to ensure variations in types
of material and damages. Data were then acquired according to the simple protocol as
depicted in Figure 2A, which consisted of: (i) background acquisition to capture thermal
ambience, (ii) RGBT acquisition, and (iii) RGBT acquisition after momentarily heating the
garment using a hair dryer. As depicted in Figure 2B, RGB and thermal cameras were
arranged so that the garments could be placed underneath the cameras at a distance of
approximately 0.5 m. A Logitech BRIO 4K UHD webcam (Logitech International, Lausanne,
Switzerland) was used to capture RGB video frames with 640 × 480 resolution, while
thermal infrared frames were captured using a thermal camera (A65SC, FLIR systems Inc.,
Wilsonville, OR, USA) with 640 × 512 resolution. The spatial alignment between the RGB
and thermal frames was achieved using a custom 3D printed mount that enabled placing
the RGB camera on the thermal camera as shown in Figure 2B.

Figure 2. Data acquisition process. (A) Acquisition protocol; (B) RGBT camera setup; (C) Damaged
garment and corresponding labeling with segmentation mask; and (D) Python-QT based application
interface for synchronized RGBT acquisition.

To ensure synchronization between RGB and thermal frames, we developed a multi-
threaded application with a user interface using Python v3.10 and Qt v6.0 framework [38],
as shown in Figure 2D. The source code [39] for this application was adapted from a
multithreaded application developed for PhysioKit [40] to acquire the iBVP dataset [41],
comprising synchronized RGB and thermal facial video frames along with physiologi-
cal signals. Each acquired image was annotated for damaged regions, textile material
shape, and nontextile parts by two annotators, and rigorously validated by three other
researchers, including textile experts. A Computer Vision Annotation Tool (CVAT) [42]
was used to mark polygons as shown in Figure 2C, which were further transformed into
segmentation masks.

3.2. Diversity of Textile Damage and Materials

The RGBT-Textile dataset encompasses a broad spectrum of textile damage and mate-
rial types to reflect real-world challenges in garment inspection. Damages were categorized
into three primary classes: structural damage (for example, holes, tears, frayed edges),
surface anomalies (for example, stains, discolorations, burns), and manufacturing flaws (for
example, stitching errors, uneven dyeing) [4,32]. These damages vary in size (5–150 mm2)
and spatial distribution, with irregular shapes mimicking the natural patterns of wear and
tear observed in post-consumer textiles [1]. The dataset includes garments composed of
cotton (42%), polyester (28%), blended fabrics (20%), and synthetic fibers (10%), selected
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for their prevalence in fast fashion and their susceptibility to thermal variations during
imaging [43].

As shown in Table 1, the characteristics of the damages are further quantified by the
variability in the thermal response (δ T = 0.5–3.0 °C), which complicates segmentation
due to the overlapping temperature profiles between the damaged and intact regions [25].
For example, polyester exhibits a lower thermal emissivity than cotton, which requires the
extraction of modality-specific characteristics [44]. This diversity underscores the need for
specialized approaches, as generic RGBT models often fail to distinguish subtle thermal
gradients or irregular damage boundaries, as discussed in Section 6.3.

Table 1. Damage characteristics in the RGBT-Textile dataset, including size ranges, material types,
thermal variations, and occurrence frequencies. Thermal response variability (δT = 0.5–3.0 °C)
complicates segmentation due to overlapping temperature profiles [16].

Damage Type Size Range (mm2) Material Type Thermal Variation (◦C) Occurrence Frequency (%)

Holes 5–50 Cotton, Blended 1.2–2.5 30

Stains 10–120 Polyester, Synthetic 0.5–1.8 25

Tears 15–150 All materials 1.0–3.0 20

Stitching Errors 5–30 Cotton, Synthetic 0.7–1.5 15

Discolorations 20–100 Blended, Polyester 0.6–1.2 10

4. Thermal Frequency Normalization: ThermoFreq
In RGBT segmentation tasks, normalization assumes paramount importance due to the

varied distributions of RGB and thermal pixels. The features present in thermal images are
frequently less prominent and are subject to significant levels of ambient-temperature noise,
thereby complicating the extraction of meaningful features. Earlier research with thermal
images predominantly relied on the utilization of manufacturer-implied pseudo-color
maps, which often linearly mapped raw temperature values onto an 8-bit image frame [45].
However, subsequent studies have emphasized the necessity of application-specific optimal
mapping, such as optimal quantization for the robust tracking of regions of interest [25].
Most contemporary thermal cameras provide access to a raw temperature image matrix,
as opposed to pseudo-color maps or quantized images. This particularity highlights the
necessity for tailored normalization techniques to ensure the effective fusion and precise
interpretation of multispectral data, a requirement that researchers often overlook.

The significance of enhancing the saliency of features in thermal imaging has been
highlighted by previous research. For example, optimal quantization increased the reliabil-
ity of tracking respiratory signals and vasomotor activities in low-resolution mobile thermal
imaging [25,46,47]. In 3D reconstruction, applying a cosine transformation to intensity
values [48] proved beneficial, although this technique increases contrast for certain intensity
levels while diminishing it for others. In the realm of deep learning models, improving the
saliency of input thermal images can serve as a promising preprocessing step with consid-
erable potential to enhance downstream performance, yet this area has received insufficient
attention in the current literature. Drawing upon empirical observations that highlight the
occurrence of noise predominantly at higher frequencies relative to informative pixels, we
propose ThermoFreq as an essential preprocessing step for thermal imaging segmentation,
aimed at mitigating the effects of temperature noise in segmentation tasks. This technique
involves the manipulation of the frequency components of the image within the frequency
domain. The process described in ThermoFreq includes transforming the image from the
spatial to the frequency domain, evaluating and adjusting the temperature frequency values
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across the dataset, and then reverting the image back to the spatial domain. In practice,
this involves the removal or nullification of high-frequency values, followed by scaling the
residual pixel values to a range of 0 to 255.

The first step in frequency-based normalization is to transform an image from the
spatial domain to the frequency domain using the Fourier transform. For a given image
f (x, y), the 2D Fourier Transform isdefined as:

F(u, v) =
M−1

∑
x=0

N−1

∑
y=0

f (x, y)e−2πi( ux
M +

vy
N ) (1)

where M and N are the dimensions of the image, F(u, v) represents the frequency domain
representation of the image, and (u, v) are the frequency coordinates. After an image is
transformed into the frequency domain, the magnitude of the high-frequency components
is set to zero to remove noise. For instance, to zero out a central region of the frequency
components, we define a mask:

H(u, v) =

1 if
√
(u − u0)2 + (v − v0)2 > D0

0 otherwise
(2)

where (u0, v0) is the center of the frequency domain and D0 is the cutoff distance as denoted
t. The threshold t determines the radius of the region around the center that is zeroed
out, effectively filtering out those frequency components. The modified frequency domain
image G(u, v) is then obtained by element-wise multiplication of F(u, v) with the mask
H(u, v):

G(u, v) = F(u, v) · H(u, v) (3)

After manipulating the frequency components, the inverse Fourier transform is ap-
plied to transform the image back to the spatial domain. The 2D inverse Fourier transform
is defined as:

g(x, y) =
1

MN

M−1

∑
u=0

N−1

∑
v=0

G(u, v)e2πi( ux
M +

vy
N ) (4)

where g(x, y) is the resulting image in the spatial domain. Finally, the image is normalized
to the range [0, 255]. This is achieved by:

gnorm(x, y) =
(

g(x, y)− min(g)
max(g)− min(g)

)
× 255 (5)

where min(g) and max(g) are the minimum and maximum pixel values in the image
g(x, y), respectively. This process is depicted in Figure 3.

Figure 3. Overview of ThermoFreq Normalization Process.

This process retains the mean temperature value of an original image while increasing
the standard deviation, indicating a greater spread of temperature values and enhanced
image features.
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Figure 4 demonstrates how ThermoFreq enhances thermal images by manipulating
specific frequencies in the MF dataset [49], by plotting the mean and standard deviation of
each image in the dataset, before and after applying ThermoFreq. The effect observed in
Figure 4 is with a cut-off distance of D0 = 1.

Figure 4. Mean and Standard deviation of MF dataset. Plot on the left shows the mean and std before
applying ThermoFreq, and the right shows the mean and std after applying ThermoFreq.

Figure 5 provides a qualitative depiction of the effect of modifying the cut-off dis-
tance D0 on thermal images sourced from two distinct datasets: MF (left) and PST (right).
The images illustrate how the alteration of specific frequencies by ThermoFreq enhances
features and contrast within the thermal images. Through adjustment of D0, the figure
reveals visual alterations in thermal images, underscoring the ability of ThermoFreq to
enhance fine details while preserving the overall mean temperature (see also Figure 4).

Figure 5. Thermal images from the MF (left) and PST (right) datasets, illustrating the visual effects of
different cutoff distances D0.

The observed color variations in the pseudo-color maps, such as increased redness or
yellowness in the MF data set, reflect temperature deviations relative to ambient conditions,
where the shades of pseudo-color correlate with the thermal contrast of the object against its
surroundings. In contrast, the PST dataset, comprising underwater thermal scenes, exhibits
minimal visual changes due to inherently constrained temperature gradients in aquatic
environments. Although all processing was performed on the raw thermal data, we show
the pseudo-color maps for visual illustration and further contextualize these observations;
the processed images demonstrate ThermoFreq’s adaptive enhancement capabilities suffi-
ciently. This aligns with the technique’s design to amplify discriminative features while
mitigating noise, even when ambient thermal profiles limit observable variability.
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Figure 6 represents temperature data in the 3rd dimension to elucidate the effects of
varying cut-off distances D0 on discrete thermal images sourced from two datasets: MF
(upper) and PST (lower). These images demonstrate the manner in which ThermoFreq
adjusts specific frequencies to enhance distinct features and contrast. Through modulation
of D0, the qualitative influence on thermal images is reflected, underscoring the technique’s
ability to augment features and enhance the overall saliency of the images.

Figure 6. Three dimensional plots for thermal images from the MF (top) and PST (bottom) datasets,
to visualize the differences in the distribution of temperature values across the spatial plane, as a
result of applying different cutoff distances D0. The brighter yellow shades indicate high temperature
values, while the darker blue shades indicate low temperature values.

5. Experiments
We first evaluate the effectiveness of ThermoFreq using existing RGBT segmenta-

tion models. Next, we evaluate the impact of the tolerance threshold t on segmentation
performance across different datasets. Lastly, we evaluate the impact of the tolerance
threshold t on individual classes of the data set RGBT-Textile. For evaluation, we used two
transformer-based RGBT models, viz. CRM_RGBTSeg [34] and MMSFormer [11], which
have demonstrated state-of-the-art performance for the RGBT segmentation task. These
models are variations of the Swin Transformer models [50] adapted to handle an additional
channel of thermal images. In addition, we also report the performance using U-Net [51]
models with ResNet18 and ResNet50 [52] backbones. We adopt three commonly used
metrics for evaluation: mean Intersection over Union (mIoU), mean precision, and mean
recall [18,20,20]. Our model is implemented using PyTorch v1.9.0 framework [53], PyTorch
lighting [54], and MMCV libraries [55], and trained on an NVIDIA GeForce RTX 3090 GPU.
We follow the training and testing settings from [12,34] and resize the training and testing
images to 224 × 224.

6. Results and Discussion
We first evaluate the effectiveness of ThermoFreq and the impact of the toler-

ance threshold t on the performance of semantic segmentation models, specifically
CRM_RGBTSeg, MMSFormer, and CNN-based models (UNet with ResNet18 and ResNet50
backbones), across RGBT datasets. For this study, we limit our models to CNN [52,56–58]
and transformer-based architecture [11,59] due to their high generalization capability.
The results in Tables 2 and 3 show performance gains when models are trained using
ThermoFreq, with transformer-based models generally outperforming CNN-based models
by 1–2%.
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Table 2. Comparison of mean Intersection over Union (mIoU) for RGBT datasets using
CRM_RGBTSeg and MMSFormer, both with and without normalization. Results highlight that
normalization consistently improves the performance. The performance of CNN-based UNet models
are additionally shown to compare against transformer-based models.

Model CRM_RGBTSeg MMS-
Former-84

UNet

Backbone Swin Base Swin Small Swin Tiny ResNet18 ResNet50

Normalization ✓ ✓ ✓ ✓ ✓ ✓

Datasets

KAIST Multispectral Pedestrian 0.552 0.567 0.544 0.560 0.512 0.554 0.552 0.565 0.550 0.555

LLVIP Dataset 0.682 0.701 0.680 0.692 0.664 0.679 0.663 0.675 0.670 0.673

MF Dataset 0.578 0.586 0.572 0.582 0.556 0.570 0.578 0.589 0.577 0.580

OSU Thermal Pedestrian 0.980 0.994 0.980 0.994 0.970 0.994 0.980 0.992 0.990 0.993

McubeS 0.523 0.545 0.519 0.542 0.497 0.530 0.504 0.522 0.512 0.520

PST900 0.877 0.889 0.871 0.885 0.849 0.880 0.874 0.855 0.872 0.875

RGBT-Textile (Ours) 0.842 0.846 0.840 0.843 0.822 0.835 0.842 0.852 0.840 0.845

6.1. Evaluation of ThermoFreq with Transformer and CNN-Based Models

Table 2 shows the Mean Intersection over Union (mIoU) for CRM_RGBTSeg using
Swin Base, Swin Small, Swin Tiny, and UNet with ResNet18 and ResNet50 backbones,
both with and without normalization. Transformer-based models consistently outperform
CNN-based models across different datasets by approximately 1–2%. For example, on the
KAIST Multispectral Pedestrian Dataset, CRM_RGBTSeg with Swin Base achieves an mIoU
of 0.567 with normalization, compared to 0.555 with ResNet50 and 0.553 with ResNet18.
This suggests that transformer-based models are more robust in learning complex features
from RGBT data.

ThermoFreq normalization improves mIoU for all versions of CRM_RGBTSeg and
CNN-based models. In particular, Swin Tiny sees a significant improvement, with mIoU
increasing from 0.512 to 0.554. In contrast, ResNet-based models show more modest
gains, such as an increase from 0.542 to 0.550 for ResNet18. The improved performance of
transformer models is attributed to their better ability to model global dependencies and
integrate information across multiple modalities, such as RGB and thermal images, while
CNN-based models are more reliant on local features.

The performance of MMSFormer with and without normalization is also presented in
Table 2. The results show that MMSFormer, although improved with normalization, still
lags behind CRM_RGBTSeg by a small margin. For example, on the KAIST Multispectral
Pedestrian Dataset, MMSFormer achieves an mIoU of 0.561 with normalization, while
UNet with ResNet50 achieves 0.552, highlighting the superior performance of transformer-
based architectures even when compared to CNN models. The results indicate that the
complementary random masking strategy in CRM_RGBTSeg is more effective for RGBT
segmentation than the residue-based approach in MMSFormer.

6.2. Impact of Different Tolerance Thresholds

Table 3 shows the mIoU for CRM_RGBTSeg and MMSFormer with different tolerance
thresholds t (0, 0.5, 1, 5, 10). We observe that t values affects model performance across
datasets. For example, the KAIST multispectral pedestrian data set benefits from higher
t values, achieving the highest mIoU of 0.567 at t = 10 for CRM_RGBTSeg. Conversely,
the PST900 dataset, which has a lower temperature range, achieves its best mIoU of
0.885 at a lower t value of 0.5 for CRM_RGBTSeg. This indicates that datasets with a
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higher thermal temperature range benefit more from higher t values, as more aggressive
denoising is necessary to handle the increased noise. On the other hand, datasets with
a lower temperature range require lower t values to avoid losing important information
during denoising.

The findings suggest that a small amount of normalization (tolerance level of 0.5) has
little effect, while a moderate level (tolerance level of 1) generally improves performance
by removing noise. However, high tolerance levels (5 or 10) can be detrimental, especially
for datasets with small temperature ranges, as they discard critical information. This effect
is more pronounced for smaller models, whereas larger models inherently ignore noise
during training. In summary, moderate normalization enhances segmentation performance,
particularly for smaller models and datasets with large temperature ranges.

6.3. Class Specific Performance on RGBT-Textile Dataset

Table 4 highlights the segmentation performance of CRM_RGBTSeg, MMSFormer,
and UNet-ResNet18/ResNet50 on the RGBT-Textile dataset with background, garment,
and damaged area as semantic classes, across different thresholds t (t = 0, 0.5, 1, 5, 10).
The results provide insights into the characteristics and challenges related to the detection
of garment damage. The mIoU values for both models indicate that the dataset is mod-
erately challenging, with the highest performance metrics peaking at t = 0.5 and t = 1.
This suggests that complexity of the dataset allows models to achieve good segmentation
accuracy with relatively short processing times, but prolonged processing does not nec-
essarily enhance performance and may introduce noise or overfitting. The precision and
recall metrics follow a similar trend as mIoU, with optimal values at t = 0.5 and 1, and a
gradual decline at t = 5 and t = 10.

The mIoU values for CRM_RGBTSeg, MMSFormer, UNet-ResNet50, and UNet-
ResNet18 show that the dataset is moderately challenging, with the best results generally
achieved at t = 0.5 and t = 1. UNet-ResNet50 shows competitive performance, especially
for the background class, while CRM_RGBTSeg performs best overall for the damage area
class. Precision and recall metrics follow similar trends, with peak performance at t = 0.5
and t = 1, and a decline for t = 5 and t = 10, suggesting that higher tolerance levels can
introduce noise.

6.3.1. Background

The background class shows the highest segmentation performance across all models,
with CRM_RGBTSeg achieving an mIoU between 0.850 and 0.870 and MMSFormer between
0.836 and 0.854. UNet-ResNet50 outperforms the other models with an mIoU of up to 0.883
at t = 1, indicating that it can capture the relatively distinct background features of the
dataset well.

6.3.2. Garment

The performance for the garment class is slightly lower than for the background,
with CRM_RGBTSeg achieving an mIoU up to 0.830, and UNet-ResNet50 performing
best with an mIoU of 0.849. This reflects the more variable nature of garments, including
different textures and colors, increasing the difficulty of segmentation.

6.3.3. Damaged Area

The most challenging class is the damaged area, with mIoU values reaching 0.645 for
CRM_RGBTSeg and 0.675 for UNet-ResNet50 at t = 1. The lower performance suggests
that the damaged areas are harder to distinguish due to their irregular shapes and smaller
presence in the dataset.
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Table 3. Comparison of mean Intersection over Union (mIoU) for RGBT datasets using CRM_RGBTSeg, MMSFormer, and UNet-ResNet18/ResNet50, with different
t thresholds (t = 0, 0.5, 1, 5, 10). The results highlight the performance improvements with normalization for both models across different datasets, indicating their
robustness and accuracy in RGBT semantic segmentation tasks.

Dataset\Model CRM_RGBTSeg MMSFormer Unet ResNet18 Unet ResNet50

Tolerance t = 0 t = 0.5 t = 1 t = 5 t = 10 t = 0 t = 0.5 t = 1 t = 5 t = 10 t = 0 t = 0.5 t = 1 t = 5 t = 10 t = 0 t = 0.5 t = 1 t = 5 t = 10

KAIST Multispectral
Pedestrian 0.552 0.563 0.564 0.463 0.367 0.552 0.561 0.562 0.464 0.365 0.550 0.560 0.561 0.460 0.365 0.555 0.565 0.566 0.462 0.368

LLVIP Dataset 0.682 0.697 0.698 0.600 0.501 0.663 0.671 0.672 0.574 0.475 0.670 0.684 0.685 0.589 0.482 0.673 0.688 0.689 0.590 0.485

MFNet Dataset 0.556 0.578 0.579 0.480 0.381 0.578 0.585 0.586 0.487 0.389 0.577 0.595 0.596 0.489 0.387 0.580 0.598 0.599 0.491 0.390

OSU Thermal Pedestrian 0.980 0.990 0.991 0.793 0.694 0.980 0.988 0.989 0.791 0.692 0.990 0.993 0.994 0.790 0.693 0.993 0.996 0.996 0.792 0.695

McubeS 0.523 0.541 0.542 0.444 0.345 0.504 0.518 0.519 0.421 0.322 0.512 0.529 0.531 0.422 0.327 0.520 0.535 0.537 0.425 0.330

PST900 0.877 0.885 0.868 0.748 0.639 0.874 0.881 0.872 0.729 0.625 0.872 0.883 0.870 0.735 0.628 0.875 0.886 0.873 0.737 0.630

Dataset (Ours) 0.822 0.842 0.843 0.745 0.646 0.842 0.848 0.849 0.751 0.652 0.840 0.856 0.857 0.749 0.650 0.845 0.861 0.862 0.754 0.655

Table 4. Performance comparison of CRM_RGBTSeg, MMSFormer and U-Net models on RGBT-Textile dataset for different t thresholds (t = 0, 0.5, 1, 5, 10). Metrics
include mean Intersection over Union (mIoU), precision, and recall for the entire dataset and individual classes (background, garment, damaged area).

Performance Metrics\Model CRM_RGBTSeg MMSFormer UNet-ResNet18 UNet-ResNet50

Tolerance t = 0 t = 0.5 t = 1 t = 5 t = 10 t = 0 t = 0.5 t = 1 t = 5 t = 10 t = 0 t = 0.5 t = 1 t = 5 t = 10 t = 0 t = 0.5 t = 1 t = 5 t = 10

mIoU/Whole dataset 0.822 0.842 0.841 0.830 0.820 0.810 0.828 0.827 0.817 0.808 0.840 0.856 0.857 0.749 0.650 0.845 0.861 0.862 0.754 0.655

Precision/Whole dataset 0.830 0.850 0.849 0.838 0.828 0.818 0.835 0.834 0.824 0.815 0.848 0.864 0.865 0.757 0.656 0.853 0.870 0.871 0.759 0.661

Recall/Whole dataset 0.815 0.835 0.834 0.823 0.815 0.803 0.820 0.819 0.811 0.803 0.832 0.849 0.850 0.738 0.646 0.837 0.854 0.855 0.742 0.650

mIoU/Background 0.850 0.870 0.869 0.858 0.850 0.836 0.854 0.853 0.845 0.838 0.860 0.878 0.879 0.769 0.661 0.865 0.882 0.883 0.773 0.665

mIoU/Garment 0.810 0.830 0.829 0.820 0.810 0.796 0.813 0.812 0.808 0.798 0.825 0.842 0.843 0.740 0.633 0.830 0.848 0.849 0.745 0.640

mIoU/Damaged area 0.580 0.645 0.640 0.630 0.620 0.565 0.629 0.623 0.617 0.608 0.590 0.655 0.660 0.550 0.448 0.605 0.670 0.675 0.555 0.452
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The varying mIoU values between classes indicate that the RGBT-Textile data set
contains a range of variability and complexity. Although the background and garment
are segmented more reliably by the models, damaged areas present more challenges.
This variability necessitates robust segmentation models that can generalize well across
different classes and advance the state of damage detection. The lower performance for the
damage area class highlights the need to further refine the normalization technique that
can specifically enhance the corresponding features. Enhancing the quality and quantity
of damaged area annotations, augmenting the dataset with more diverse examples of
damaged areas, could further help improve segmentation performance.

These findings indicate that the UNet-ResNet50 model offers competitive performance
across all semantic classes, particularly excelling in the background and garment segmen-
tation tasks. The CRM_RGBTSeg model remains strong for damage area detection. Both
models benefit from normalization at moderate tolerance thresholds (t = 0.5 and t = 1).
Further improvements could be achieved by increasing the diversity of garment and dam-
age area samples in the dataset and enhancing the models’ ability to capture subtle features
in challenging classes like the damaged area.

In the context of textile semantic segmentation tasks, among Swin-based Transform-
ers such as CRM_RGBTseg, CNN-based models, and other Transformer models such as
MMSFormer and UNet with ResNet backbones, each offers distinct advantages and chal-
lenges. Transformer models excel at modeling long-range dependencies and capturing
global context, which translates into superior performance for tasks involving complex
data modalities, such as RGB-Thermal (RGBT) segmentation. They consistently outperform
CNNs by 1–2% in mean Intersection over Union (mIoU) across various datasets, as shown
in Table 4. However, this performance comes at the cost of increased training time and a
significantly higher number of parameters, making Transformer models computationally
more expensive and difficult to deploy in resource-constrained environments. On the other
hand, CNN-based models such as UNet with ResNet18 and ResNet50 are more efficient in
terms of training speed and memory usage, making them easier to deploy and maintain in
production systems. Despite their efficiency, CNNs are more reliant on local feature extrac-
tion, which can limit their ability to capture global context as effectively as Transformers.
In summary, Transformer models offer better performance for complex segmentation tasks,
but at the cost of higher computational overhead, while CNNs provide a more lightweight
and deployable option with slightly lower accuracy.

6.4. Robustness to Synthetic Thermal Noise

To ascertain the efficacy of ThermoFreq under various ambient conditions, we en-
hanced all datasets with thermal-specific perturbations derived from prior work on thermal
robustness [60]. These modifications consisted of: (i) Thermal Noise: The sensitivity of
a thermal infrared imaging camera is determined by a specification known as the noise
equivalent temperature difference (NETD), which specifies the minimum discernible tem-
perature difference that the camera can detect with reliability. To simulate this form of noise,
a random temperature value (κ) was introduced to each pixel such that 0 < κ < Thmax

NETD,
with the maximum NETD value, Thmax

NETD, established as 0.1 °C, reflecting the worst-case
specification criteria for a low-cost thermal imaging camera [60]. (ii) Random Thermal
Occlusion: Masking 10–20% of regions with synthesized patches exhibiting extreme low or
high temperatures. Subsequently, the models were retrained using these augmented data,
while maintaining the integrity of the test sets.

Table 5 shows that ThermoFreq-enhanced models maintain superior performance
under synthetic noise compared to baselines. For example, CRM_RGBTSeg + ThermoFreq
achieves 0.843 mIoU on augmented RGBT-Textile vs. 0.821 for vanilla CRM_RGBTSeg,
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an improvement of 2.2%. CNN-based models exhibit larger performance drops (up to
4.8% for UNet-ResNet18), indicating greater sensitivity to thermal perturbations without
explicit normalization.

Table 5. Performance comparison (mIoU) on original vs. thermally-augmented datasets. Models
trained with ThermoFreq show greater robustness to synthetic noise/occlusions compared to baselines.

Dataset
CRM_RGBTSeg MMSFormer UNet-ResNet50

Orig Aug Orig Aug Orig Aug

KAIST Multispectral Pedestrian 0.567 0.541 0.565 0.538 0.555 0.512
LLVIP Dataset 0.701 0.683 0.675 0.651 0.673 0.634

MF Dataset 0.586 0.569 0.589 0.563 0.580 0.547
RGBT-Textile (Ours) 0.846 0.843 0.852 0.831 0.845 0.809

This demonstrates ThermoFreq’s practical value for real-world deployment where
ambient-temperature variations induce thermal noise. By explicitly normalizing thermal
responses during preprocessing, our method reduces the dependency on data augmentation
for robustness.

6.5. Comparative Analysis

Existing RGBT models, such as CRM_RGBTSeg and MMSFormer, demonstrate re-
duced efficacy on RGBT-Textile compared to pedestrian-centric datasets (e.g., KAIST,
LLVIP). For example, irregular damage geometries (e.g., jagged tears) yield 12–18% lower
precision in transformer-based models due to their dependence on global context, which
struggles with localized anomalies [21]. Similarly, CNN architectures such as UNet-
ResNet50 exhibit limited sensitivity to subtle thermal gradients (δT < 1.0°C), critical for
detecting stains or discolorations in synthetic fabrics [15]. These limitations highlight the
need for domain-specific adaptations, such as ThermoFreq’s frequency-sensitive normal-
ization, to address textile-specific noise and variability.

7. Conclusions
In this study, we present the dataset RGBT-Textile, crafted specifically for the semantic

segmentation of textile damages. Through a comprehensive series of experiments, we
assessed the performance of this dataset by employing benchmark methodologies such
as the CRM_RGBTSeg and MMSFormer models. These models were evaluated with and
without the implementation of our novel frequency-based normalization technique, Ther-
moFreq. The empirical findings illustrate that the ThermoFreq normalization technique
considerably enhances the performance metrics of the RGBT models. Specifically, we
noticed performance improvements ranging from 1% to 1.5% mIoU in different datasets.
This improvement trend is consistent, albeit slightly diminished (approximately 0.5 to 0.7)
for models trained in the absence of ThermoFreq. The ThermoFreq technique effectively
mitigates the inherent noise present in thermal images, thus ensuring robust feature ex-
traction and facilitating effective data fusion. This results in a better and more efficient
fusion of RGB and thermal data, culminating in superior model performance in challenging
segmentation scenarios. In summary, our RGBT-Textile dataset, in conjunction with the
ThermoFreq normalization technique, establishes a strong foundation for advancements in
the field of textile damage detection. These contributions underscore the potential for the
integration of RGB and thermal data to improve segmentation accuracy, paving the way for
more sustainable and automated textile repair solutions. Future research efforts will aim to
expand the dataset with additional samples and labels, further investigate the advantages
of our normalization technique, and promote collaboration within the computer vision and
textile repair communities.
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