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Abstract. The ever-increasing demand for user-centred smart products has driven 
the need for automation methodologies in product design processes, particularly for 
assessing usability and user experience (UX). Traditionally, practitioners construct 
functional (software) or physical (hardware) product prototypes to enable usability 
and UX assessments. Constructing a prototype followed by human testing are both 
time consuming and expensive activities.  If virtual models and automated methods 
can replace some components of these activities, the time and cost of smart product 
development could be reduced while continuing to generate useful and beneficial 
products. In this paper, we survey the literature related to automated assessment 
methods for designing user-centric smart products. We identified five key activities 
on which to focus related to the testing or the design cycle: design thinking, design 
ideation, prototype creation, user data collection, and data analysis. The review 
methodology consisted of comprehensive search queries tailored to each activity to 
encapsulate automation methods pertinent to smart product development in research 
articles published from 2000-2023. Over 100 relevant articles were identified across 
engineering, human-computer interaction, human factors, industrial design, and 
other disciplines. This review highlights the effectiveness and limitations of various 
automation methods, benchmarked against traditional practice, providing valuable 
insights and practical recommendations for researchers and designers seeking to 
optimize smart product design processes for broad usability concerns. We are 
particularly interested in designing assistive mobility and rehabilitation devices. 
Development time and resources are often limited yet usability and UX directly 
impact important outcomes including perceived function, stigma, and device 
adoption. Improving these requires a transdisciplinary approach. 

Keywords. Usability assessment, User experience, Smart products, Cyber-Physical-
Human systems, Transdisciplinary engineering. 

Introduction 

Much traditional product design following conventional practices was characterized by 
iterative methods with minimal technology integration and minimal user participation in 
the design cycle before a physical prototype was created. The process often relied on 
brainstorming the idea of a new product or improve an existing product, physical 
prototyping, manual surveys for user data collection, and manual methods for user data 
analysis, resulting in extended development cycles and huge resource utilization. 
However, current principles of user centered design, enhanced user experience (UX), 
and inclusive design (ID) have advocated for user involvement in the design cycle to 
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create successful products. Simultaneously, new and innovative methods have emerged 
to automate the ways in which user voice can be integrated in the design cycle.  

For this work, smart products are cyber-physical-human systems (CPHS) that 
deliver services to the user through a user interface, while sensors and local computation 
read user commands and signals, then take appropriate actions. Smart products consist 
of three main subsystems: cyber, physical, and human. The physical subsystem consists 
of the product hardware, while the human subsystem comprises of the user interface, 
services, and the UX. The cyber subsystem consists of local computation and an optional 
back-end system for recording data and significant computation.  

This literature review focusses on answering the question: What is the current state-
of-the-art of automated assessment methods for smart products? We believe that the 
state-of-the-art is not well developed. But if such automated assessment methods could 
be developed, they could have a tremendous impact on smart product acceptability and 
usability. Also, we believe that good methods for user data collection and analysis have 
been developed but they fall short of providing needed insights into smart product 
acceptability and usability.  

 

 
Figure 1. Activities of interest mapped onto the “double diamond” product design process. 

 
Figure 2. Proposed design framework. 

Consistent with our research question, we investigate automation methods that have 
been incorporated at different stages in the design cycle of user-centric smart products. 
We have situated our survey relative to the well-known “double diamond” UX design 
process model [1] in Figure 1. In UX and ID, engagements with users early in product 
design are necessary for problem formulation and solution evaluation.  We emphasize 
automation methods in rapidly synthesizing problem definitions from user requirements 



 

(UR), market trends, and challenges (first diamond - Discover), and in product 
development (second diamond- Develop) through automation in ideation, prototype 
creation, user data collection, and usability analysis. We are not advocating limits on user 
engagement; rather, we emphasize more efficiently and effectively performing UR 
analysis, design solution generation, and usability evaluation. As we have identified, 
automation can play a major role in five key steps of the design cycle: Design Thinking 
(DT), Design Ideation (DI), Prototype Creation (PC), User Data Collection (UDC), and 
User Data Analysis (UDA). We comprehensively explore innovative automation 
methods used in each stage to integrate UR, preferences, and perspectives, aiming to 
enhance user satisfaction and acceptability of smart products. As a result, we gain 
insights into how user voice has been integrated into the design cycle of smart products 
over the past two decades through automation and can partially answer our research 
question. 

We envision a future CPHS design framework that is built upon a model-based 
systems engineering (MBSE) framework with significant elements of UX design and 
human factors [2]. To emphasize the solution development phase of the design process, 
a schematic of a proposed design framework, shown in Figure 2, supports rapid design 
ideation and evaluation using automated methods (Automated Tests) in a short iterative 
loop. For selected designs, a more complete and rigorous evaluation should be performed 
with user tests in a longer iterative loop. Note the color coding of the five steps to show 
the relationships between the design framework and Figure 1. For the purposes of this 
paper, we focus on the shorter loop using automated methods. 

1. Review methodology 

We conducted a systematic review encompassing literature from 2000 to 2023 utilizing 
documents sourced from the Web of Science (WoS) database. Our main research query 
was: what methodologies of automation are employed in the design and development of 
user centric smart products? For each of the key steps, specific keyword-based search 
queries were utilized comprising of keywords such as (“data mining” OR “machine 
learning”) AND (“user requirement”) for DT, (“generative AI”) AND (“design”) for 
DI, (“virtual”) AND (“prototype”) for PC, (“sensor”) OR (“user data” OR “user 
feedback”) for UDC, and (“user data” OR “user feedback”) AND (“machine 
learning” OR “deep learning”) for UDA. A total of 4,206 articles were identified from 
the WoS database.  After that, we applied inclusion and exclusion criteria, selecting 
articles published in English and focusing on smart products and usability studies. 
Articles solely focused on user interface development were excluded. This process 
yielded 109 articles from the WoS database. Further, a manual search on Google Scholar 
yielded an additional 45 articles. Hence, 154 research articles were chosen for this review. 

2. Automating the design cycle of smart products 

2.1. Automating design thinking 

DT is crucial for understanding user needs and defining the problem a smart product will 
solve. However, its traditional approach can be time-consuming and resource-intensive 
due to extensive data gathering, user studies, and market research. To expedite this 



 

process, automation methodologies are being integrated into DT, utilizing technologies 
like analytical models, data mining, machine learning (ML), natural language processing 
(NLP), and simulation techniques. 
 

Table 1. Automations in design thinking 

 
Various analytical, statistical, and graph-based tools have been developed to 

efficiently identify UR for smart products. For example, tools used include Asymmetric 
Trapezium Cloud-based Uncertain Linguistic BWM (ATCUL-BWM) [3], Knowledge 
Graphs (KG) [4], and Preference-based Assistive Product Design Model (PAPDM) [5], 
among others. 

The integration of big data analytics and ML techniques enables smart product 
designers to gain understanding of UR and preferences from appropriate user data 
repositories. These include applying deep learning methods like Doc2Vec model [6], 
UNISON framework, Bi- long short-term memory (Bi-LSTM) neural networks, bi-term 
topic model (BTM) [7], self-organizing maps (SOM) [8], and many more.  

Leveraging data mining combined with NLP allows deciphering user sentiments 
about a smart product. The studies [9], [10], and many more have deciphered user 
sentiments from user-generated content. This approach can yield a good understanding 
of users' emotional experiences. Additionally, dynamic UR mining methodologies using 
NLP techniques have been proposed [11]. These studies underscore the significance of 
continually adapting and evolving products based on dynamic UR and extracted user 
knowledge, contributing to more user-centric design approaches. 

Simulation suits, wearable devices that replicate physical conditions or impairments, 
enhance understanding and empathy towards user needs in design. Examples include 
KINdRed [12] for upper extremity disability simulation and GERT [13] for full-body 
impairment simulation. Other tools like the Cambridge simulation gloves [14] and 
glasses [15] simulate limitations in hand movement and vision loss, enabling designers 
to assess accessibility and create more inclusive designs. Simulation suits also enable 
recording sensor data during usage to enhance their value, although the data will not be 
as good as those from actual users. Table 1 shows the various automation methods used 
for different smart products and types of data resource. 

Methods Products Data resource Technique used 
Analytical, 
statistical, and 
graph-based 
models 

Smart sleeping 
service [3], Smart 
nursing bed [4] 
Walking aid for 
elderly [5] 

Textual data [3], 
interviews [4], Reddit, 
e-commerce websites, 
scientific and assistive 
device databases [5] 

ATCUL-BWM [3], KG [4], 
PAPDM combining evaluation 
grid method, Quantification 
Theory Type I, and TRIZ [5]  

Data mining and 
ML 

Taxi app [6], Smart 
cleaning robot [7], 
Electric bicycle 
service [8] 

User activity [6], e-
commerce: Jindong 
[7], public review data 
[8] 

Doc2vwc model [6], UNISON, 
Bi-LSTM, BTM, Kano and 
opportunity model [7], SOM [8] 

Data mining and 
NLP 

Smart home systems 
[9], IoT devices [10], 
SUV car models [11] 

Reddit user comments 
and posts [9], Twitter 
review data [10], 
consumer reviews [11] 

Bidirectional encoder, Plutchik’s 
wheel [9], Latent Dirichlet 
Allocation (LDA), SVM, 
multinomial Bayes, logistic 
regression (LR), random forest 
[10], term frequency, fasttext 
model [11] 

Simulation suits Upper extremity 
[12], full body [13], 
gloves [14] 

Human understanding 
of disability from 
restricted movements 

Impede movement to simulate 
disability  



 

Table 2. Automations in design ideation 

2.2. Automating design ideation 

Generative AI and generative design (GD) are revolutionizing the field of design ideation 
by automating the creation of countless design variations based on predefined parameters 
and constraints. With GD, designers can input specific parameters and constraints, 
allowing AI to independently generate multiple designs. Traditionally, GD has been used 
to propose alternative design solutions for products, specifically focusing on the 
architecture, aesthetics, and mechanical components of the product. For instance, it has 
been applied in shape synthesis and topology optimizations for bike saddles [16]. 
Further, it has demonstrated progress in the design of smart products such as 3D virtual 
aircraft [17], connection links of a robot manipulator [18] , and aerial vehicle flapping 
wings [19]. 

In the literature, impactful use cases of GD for smart products have emerged in the 
biomedical industry, including creation of a personalized vertebral body [20] using GD 
in Fusion 360 and a knee joint implant [21] through Generative Structure Optimization 
(GSO). Similarly, GD in Grasshopper has been employed to develop aesthetically 
appealing, customized designs for elbow orthosis [22]. Several passive exoskeletons and 
prosthetic devices for example, a passive prosthetic foot for patients with ambulation 
[23] and implants for maxillofacial surgery [24] have been designed by GD.  GD has 
also been applied extensively in the aerospace and additive manufacturing domains. 
Table 2 shows various types of smart products and generative techniques that have been 
identified in literature. Note that GAN denotes Generative Adversarial Network, a type 
of convolutional neural network in the machine learning field. 

2.3. Automating prototype creation 

Virtual reality (VR) and Augmented Reality (AR) have gained significant popularity as 
virtual prototyping technologies before physical manufacturing. Several research 
projects highlight their significance as cost effective and faster methods for prototyping 
in evaluating user interactions with smart products such as in smart home appliances [25], 
car models [26], and also in creating virtual training environments for smart factories 

Product User Technique Input data Metrics 
Bike saddle [16] Bike users GAN Forces and shape User preference 
Virtual aircraft 
model [17] 

Designed for all GAN Point cloud from 
3D models 

Drag coefficients 

Robotic 
manipulator [18] 

Cyber physical 
production system 

Shape generation 
in Autodesk 

Design 
parameters (DP) 

Forces, weight, 
and time 

Flapping wing air 
vehicle [19] 

Designed for air 
vehicle 

Bio-inspired GD Wing DP and 
flight conditions 

Lift, flight speed 

Spinal orthosis 
[20] 

Upper body 
disability patients 

Fusion 360 DP, material (M), 
manufacturing 
technology (MT) 

Production cost, 
mechanical 
properties (MP) 

Knee implant [21] Knee disability GSO DP, M, MT MP 
Elbow orthosis 
[22] 

Elbow issues Grasshopper DP, M, MT MP 

Prosthetic foot 
[23] 

Ambulated patients Fusion 360 Forces. mass, MT Safety factor, cost 

Maxillofacial 
implants [24] 

Patients requiring 
surgery 

Field driven GD 
in nTopology 

DP and surgical 
process 

Computation 
time, stress area 



 

[27]. In the biomedical industry, VR and AR systems have been utilized for developing 
immersive and highly engaging rehabilitation systems, aiding patients after treatment, 
for example after breast cancer surgery [28] and stroke [29]. Such methods improve 
attention, memory, and motor coordination in patients and also enhance the UX. 
Additionally, Tangible Augmented Reality (TAR) has been used to evaluate usability of 
smart products with physical interface controls [30]. Table 3 shows the hardware 
requirements, characteristics, and applications of virtual prototyping. 

Table 3. Automations in prototype creation 

2.4. Automating user data collection 

This stage involves gathering user interaction data to detect usability issues. 
Traditionally, user data for usability testing was collected through subjective 
questionnaires and user testing, but automation techniques have enhanced the depth and 
quality of information gathered in recent years. 

Capturing user activity and action sequences provides real-time quantitative data on 
user engagement, reaction, mental workload, distractions, and ease of use. Various 
sensors such as eye tracking [31, 32], accelerometers, inertial motion units (IMU) [33], 
and dynamometers [34] have been integrated into smart products to collect user activity 
data for usability testing. Sensors also capture user psychological and physiological 
response to smart product interactions; sensors include electroencephalogram (EEG), 
electrocardiogram (ECG), electromyography (EMG), electrodermal activity (EDA) 
sensors, and temperature sensors [35], [36], [37]. These data offer insights into real-time 
user emotions, cognition, and experiences with smart products, facilitating quantitative 
usability analysis, albeit limited. Additionally, novel methods for user data collection, 
such as Functional Near-infrared Spectroscopy (fNIR) and oxygen levels in the brain 
(HbO2), have been employed in some research [38]. Table 4 shows the different types 
of sensors and their purpose in usability studies. 

2.5. Automating user data analysis 

This stage involves analyzing the collected data to identify patterns and trends, and to 
inform further design iterations. The emergence of automated data analysis techniques, 
powered by analytical tools, ML, and NLP has opened new doors for a truly data-driven 
design approach for evaluating usability and UX (see Table 5). 

Analytical tools such as USEMATE [39] and Active story [40] have been proposed 
as automated usability testing tools. Additionally, statistical techniques such as Partial 
Least Squares Structural Equation Modeling have been used to assess user satisfaction 
and engagement [41]. ML offers advantages over analytical tools for handling large and 

Method Characteristics Hardware required  Platforms 
VR Fully immersive VR headsets, motion controllers, room scale 

tracking systems, gaming PC or consoles, VR 
compatible headphones, haptic feedback devices 

3DVIA [25, 
26], Unity 
3D [27] 

AR Semi-immersive  Smartphones/tablets, AR glasses such as 
HoloLens, Magic leap one etc., Head mounted 
display, wearable sensors 

Unity 3D, 
Zapworks 
[28, 29] 

TAR Tangible interaction by 
physical- digital 
integration 

Tangible objects, depth sensing cameras, 
computing devices such as tablets/ smartphones, 
display devices such as screens or projectors 

Vuforia [30] 



 

diverse data sets. Algorithms such as SVM, neural networks (NN), and decision trees 
(DTree) analyzed user satisfaction and UX across various smart products [42]. Further, 
ML combined with facial recognition and audiovisual data has been used to enhance 
usability prediction [43]. Several studies have reported utilizing ML in developing 
adaptive assistive technologies for improving real-time UX. Based on physiological 
signals combined with ML, rehabilitation systems were adjusted to make the system 
engaging and useful [44]. 

NLP and sentiment analysis further expands the range of analyzable data. Several 
sentiment classifiers such as Recurrent Neural Network (RNN), LSTM, Naïve Bayes 
(NB), KNN, Logistic Regression, Light Gradient Boosting Machine (LightGBM), 
Categorical boosting algorithm (Catboost), and Valence Aware Dictionary and 
sEntiment Reasoner (VADER) have been proposed and implemented to test the 
effectiveness of novel smart products [45], [46] 

Table 4. Automations in user data collection 

 

Table 5. Automations in user data analysis 

3. Automation challenges and limitations 

Design Thinking: Incorporating all stakeholder voices is challenging due to diverse 
priorities, practices, and vocabulary. Thus design decisions often consider contexts, 
cultural aspects, and social implications of the product. Automation tools in DT struggle 
to integrate these aspects. Additionally, unstructured data from user reviews, ratings, and 
data repositories present another hurdle. 

Design Ideation: Recent advancements in generative design technologies in 
engineering domains are potent but narrowly focused. Even cutting-edge AI tools like 
ChatGPT, Dall'e, and Sora have notable limitations. Sora's generated videos are realistic 
and emotive but lack comprehensive physics and analytical capabilities. Notably, DI 
methods and tools often overlook the human subsystem in CPHS. 

Data type Sensor type Smart product tested Purpose Platform/tools  

Activity 
tracking 
sensors 

Eye tracking [31, 32]  
IMU [33] 
Dynamometer [34] 

Smart factory process  
Gait monitoring insole  
Assistive aid for hand 

Visual attention  
User motion  
Grip strength  

Tobii glass and 
iMotion [31,32] 
Custom GUI 
[33] 

Physiological 
sensors 

EMG [35] 
ECG, EDA [36] 

Knee assistive device 
Mobile app  

Muscle effort  
Heart rate, skin 
conductance 

Unity GUI [35] 
- 
 

Psychological 
sensors 

EEG [37] 
HbO2, fNRI [38] 

Touch based system 
Smart glove 

Brain activity  
O2 level in 
brain 

- 
NIRSscout [38] 

Method Smart product Data resource Technique used 
Analytical  USEMATE tool itself [38] 

Low fidelity prototypes [39] 
Task operation data (TOD) 
Prototype designer tool  

USEMATE  
Active story  

ML based Surgical robot [41] 
Agriculture digital tool [42] 
Adaptive rehabilitation [43] 

TOD and environment data  
Audio visual data   
Pulse rate, respiration rate, 
EDA, and temperature 

SVM., NN, DTree  
YOLO  
LR, SVM, NB, KNN 

NLP 
based 

E-distance learning [44] 
RoBlox metaverse app [45] 

Twitter data 
Google play reviews 

 

RNN and LSTM  
NB, KNN, LR, 
LightGBM, Catboost, 
VADER  



 

Prototype Creation: Many technical challenges exist in developing physical 
prototypes or virtual models of smart products since they are often complex mechatronic 
systems. Prototypes and models are inherently incomplete, typically emphasizing 
specific aspects of the product for testing specific functions. Notably, good technologies 
and tools are available for testing prototypes, but prototype creation is still largely a 
manual process that requires time and funding. Matching model completeness, technical 
fidelity, and user interaction sophistication to the purposes of testing is very difficult.  

User Data Collection: For UDC with physical prototypes, the devices need to 
interact with user’s bodies, which raises fidelity, ergonomics, and safety issues. It also 
constrains users to be physically collocated with the testing facility. Set-up costs for 
suitable test facilities can be high. Sensors such as EEG and ECG can generate huge 
amounts of data that can be challenging to store, process, analyze, and interpret. Since 
data collection is needed but time consuming, experiments and data collection should be 
optimized to collect only what is needed and to leverage the data as much as possible. 
Analysis and interpretation can require specialized expertise that may not be available.  

User Data Analysis: Datasets for ML and NLP methods are often unstructured; 
significant efforts may be needed to properly structure them for ML. Some data for NLP 
can be ambiguous or vague. Existing datasets for training may be incomplete, biased, or 
otherwise not applicable for types of smart products. Sensor data can be voluminous, but 
difficult to analyze or have a low signal-to-noise ratio. When multiple data sources are 
available, data often must be combined, or fused, which can raise other challenges. 
General relationships between analyzed data and human emotional responses, decisions, 
and product acceptability, etc. remain uncertain. 

4. Research issues and conclusions 

The survey and analysis reveal crucial research gaps. Addressing these gaps can propel 
automation in design processes, enhancing efficiency and effectiveness in user-centric 
smart product development. 

The reviewed automation methods lack comprehensive models of human 
perception, physical reactions, emotions, and decisions, essential for evaluating product 
usability, satisfaction, and acceptability. There has not been an effort to capture human 
behaviors and emotions to support Design Thinking or product design evaluation. 
Additionally, no similar framework to the proposed design in Figure 2 has been explored, 
and the concept of automated product evaluation for usability and acceptability analysis 
remains unexplored. Despite the growing body of literature on CPHS, a thorough 
treatment of the human element has not been demonstrated yet. 

More specific research issues are also evident from our review: (1) Research is 
needed to develop automation techniques that effectively incorporate the diverse 
stakeholder perspectives throughout the design cycle; (2) Automation to complement 
and enhance human creativity, empathy, and critical thinking in DT and user-centered 
practices, rather than replacing essential human aspects of the design process, is needed; 
(3) Automated methods to effectively handle unstructured data sources, such as 
qualitative feedback, images, and user narratives, are needed; (4) Interdisciplinary 
research is needed to address the challenges of automating PC, including seamless 
integration of mechanical, electronic, software, and user interface components; (5) 
Research gaps exist in automated user data collection that ensures user engagement, 
handles the vast amount of data while maintaining data quality and reliability; (6) 



 

Methods are needed for integrating and analyzing large datasets from diverse sources in 
UDA, to gain a comprehensive understanding of UX and preferences. 

CPHS are complex systems that attempt to seamlessly integrate mechanical, 
electronic, software, and user interface components, while considering human actions, 
responses, and decisions and other product life-cycle considerations, including 
manufacturing constraints, repair, upgrade potential, material recyclability, etc. Due to 
the complex, interdisciplinary nature of CPHS, the CPHS field requires treatment as a 
transdiscipline, not just a collection of loosely coupled disciplines.  
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