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ABSTRACT
Simulation plays a pivotal role in providing safely reproducible scenarios to evaluate the ever-advancing
domain of computer science and robotics. It was an essential part of the pandemic when no access to physical
spaces was available. The advent of AI-powered platforms in conjunction with enhanced graphics, physics
and other sensory engines attracts a new breed of interdisciplinary researchers to enter the robotic field,
most notably from computer science, engineering and social sciences. Integration of ROS as a uniform
middleware to deploy achieved outcomes in real practice provides an opportunity to move one step closer
to the sim-to-real experiences that enables researchers to test ideas beyond the close laboratory spaces.
There is a lack of comprehensive evaluation of ROS-enabled simulators, and the integration of advanced
AI techniques for realistic scenario replication. This paper addresses this challenge by evaluating ROS-
enabled simulators in the design and implementation of AI techniques through an in-depth systematic
literature review (SLR). This SLR is guided by the research and commercial market demands, employing
Population, Intervention, Comparison, Outcome, and Context (PICOC) and Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) frameworks with a major focus on Wheeled Mobile
Robots (WMRs). We also highlight the increasing importance of game engines like Unity and Unreal in
future of robotic simulations, especially under modelling close to real experiences. By comparing simulation
platform features and capabilities, this paper offers guidance to developers and researchers, enabling them
to select the most suitable platform for their projects efficiently that contradicts the commonly in use “one
size fits all” approach. Finally, based on the thorough insights from the review, we identify and suggest some
key future research directions in AI-enhanced realistic robotic simulations.

INDEX TERMS Simulation, Artificial Intelligence, Robot Operating System, Wheeled Mobile Robot

I. INTRODUCTION

IN the interdisciplinary field of robotic simulations,
the convergence of Artificial Intelligence (AI) tech-

niques with mobile robots represents a frontier of re-
search development. Despite the burgeoning interest
in this nexus, there exists a discernible gap in the
literature that comprehensively synergises AI advance-
ments and mobile robot simulation, particularly within
ROS-enabled environments. This survey is pivotal, as
it endeavours to bridge this gap by offering an ex-
haustive overview of AI-driven methodologies tailored
for mobile robots in such simulators, underscoring the
importance of perception, path planning, and control
mechanisms that ensure efficient navigation and oper-
ation across varied environments.
Overcoming the challenges associated with imple-

menting and testing robots that integrate AI techniques,

including ensuring safety, managing the cost of testing
scenarios, improving training speed, and addressing
scalability issues, is crucial for researchers [1]–[3].
By addressing these challenges through simulation,
researchers can ensure the reliability and effectiveness
of the robots they design. AI training with simulation
has several advantages:

1) Improved Safety: Simulation provides a secure
environment where AI algorithms can be developed
without posing a threat to human life or material assets
[4]. For example, training autonomous vehicles in a
virtual environment allows developers to test various
scenarios and edge cases without risking lives or prop-
erty. Similarly, when robots need to operate in extreme
conditions such as fire or earthquakes, simulations can
be used to assess their performance without real danger
[5]. AI models can be fine-tuned for increased safety
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ahead of real-world deployment by detecting and mit-
igating potential hazards through simulation.
2) Faster training: The process of training AI mod-

els in real-world conditions can often be slow and
inefficient due to factors such as the extensive time and
cost required for data collection, as well as the com-
plexities of equipment setup. Simulations present an
effective solution to these constraints, enabling rapid
iteration cycles and the possibility of parallel training
sessions. This approach capitalises on the power of
high-performance computing resources, allowing for
a more efficient learning process for AI algorithms.
Consequently, this results in the facilitation of more
rapid experimentation and development, providing an
overall acceleration in the pace of research and the
application of AI models [4].
3) Cost-effectiveness: Implementing AI training

purely in the physical world can be expensive, ne-
cessitating significant resources such as equipment,
data gathering, and operational costs. By minimising
or eliminating these costs, simulation provides a cost-
effective alternative. Once a simulation environment
has been established, it is simple to duplicate, allowing
AI training to be carried out at scale without facing
the additional expenses associated with the real-world
deployment [4], [6].
4) Scalability: Simulation enables AI training to

be scaled to address big and complicated scenarios.
This scalability allows AI algorithms to be trained on a
diverse range of scenarios and edge cases, which may
be challenging or costly to replicate in the physical
world. By exposing AI models to a variety of simulated
situations, they can be trained to manage complex and
rare events, thus enhancing their overall performance
and resilience. [4], [6].
Given the outlined benefits, the application of simu-

lation in AI training is of paramount importance. Sim-
to-real transfer techniques are particularly significant
as they involve the effective transfer of learned be-
haviours or control policies from simulated environ-
ments to the real world. However, even advanced sim-
to-real transfer techniques cannot compensate if the
simulation severely lacks realism [7]. This is especially
important in AI applications where robots may need to
operate in extreme conditions with dynamic uncertain-
ties and disturbances. For instance, consider a scenario
where a robot is aimed to be trained to ascend a cliff
using reinforcement learning (RL). The accuracy of the
details in the simulation directly affects the resilience
of the trained RL controller. Without a precise and
realistic simulation, it is impossible to ensure that the
robot is adequately trained before deploying it in the
real world.
AI techniques play a transformative role in enhanc-

ing the autonomy and efficiency of autonomous robotic
systems. By emphasising the integration of sophisti-
cated AI methodologies in simulation platforms, this
review illuminates the path towards achieving higher

degrees of realism and operational fidelity. By im-
plementing various AI techniques, mobile robots can
collect environmental data, enhance their autonomy,
and successfully complete complex tasks. They can
improve their performance in various control tasks
such as path andmotion planning, as well as perception
tasks such as object detection, collision avoidance,
mapping, and localisation [2], [8]–[37]. An extensive
review of numerous simulation platforms reveals the
diverse capabilities and features critical to AI-centric
research for mobile robots. This analysis is instrumen-
tal for developers and researchers, guiding them in se-
lecting themost appropriate platforms for their specific
needs. By comparing platforms based on criteria such
as fidelity, scalability, and support for AI integration,
this survey offers invaluable insights into the evolving
landscape of robotic simulation technologies.

Game engines like Unity and Unreal are similarly
gaining prominence in the realm of robotic simulations
[38], [39], heralded for their high fidelity and capacity
to replicate complex environmental conditions accu-
rately [40]. Portions of this review highlight the trans-
formative impact of game engine technologies in simu-
lating challenging scenarios, such as disaster response
environments, where the precision and realism of sim-
ulations are paramount. The adaptability and advanced
rendering capabilities of these engines position them as
indispensable tools in the future of robotic simulation,
enabling researchers to push the boundaries of what
is possible in simulating AI-enhanced mobile robots
under extreme conditions.

These game engines excel at simulating complex,
dynamic environments with high degrees of realism,
making them invaluable for robotic research [41].
Their ability to render intricate scenarios in real-time
allows for the simulation of various conditions under
which mobile robots must operate, ranging from urban
landscapes to unstructured terrain, thus providing an
essential tool for testing perception, navigation, and
interaction systems without the physical constraints
and risks associated with real-world testing. Moreover,
the use of game engines in robotic simulation democra-
tises access to advanced research tools. The availabil-
ity of free or relatively inexpensive licenses for aca-
demic use opens up possibilities for institutions and re-
searchers with limited resources, fostering innovation
and collaboration across the field. This accessibility,
combined with the engines’ scalability and flexibility,
empowers researchers to explore new frontiers in AI
and robotics, from developing more sophisticated au-
tonomous agents to testing novel algorithms in highly
realistic virtual worlds.

Once researchers have validated their design con-
cept through simulations, they face the task of imple-
menting their ideas on a real robot. This implemen-
tation process involves the translation of algorithms,
control systems, and perception techniques developed
during the research phase into executable code that can
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be run on the hardware of the robot. ROS (Robot Op-
erating System) serves as a framework that facilitates
the testing and implementation of robots by providing
a range of tools, libraries, and conventions. It facili-
tates the creation of sophisticated and reliable robot
behaviours across different robotics platforms [42]. As
an alternative approach to creating specialised robot
software, ROS provides a set of standard operating
system services that cover hardware abstraction, low-
level device control, implementing commonly used
features, inter-process message passing, and package
management [43]. Execution of ROS processes is rep-
resented through a graph architecture, where nodes are
responsible for exchanging messages to accomplish
tasks such as sensor multiplexing, control, status mon-
itoring, planning, and actuation. As a significant and
open-source tool in the robotics domain, ROS is widely
used by makers, researchers, and the industry. It seam-
lessly integrates with various simulators like Gazebo,
Webots, MORSE, V-REP, and others, highlighting its
adaptability and utility [44]. The integration of ROS
with game engines introduces additional layers of re-
alism and functionality. ROS bridges the gap between
simulation and real-world applications by providing a
standardised communication layer, allowing for seam-
less transition of code and concepts from a simulated
environment to physical robots. This integration is piv-
otal for advancing research in autonomous systems,
as it enables the simulation of complex interactions
within a controlled environment while ensuring that the
developed systems are directly applicable to real-world
scenarios.

Mobile robotics is a rapidly evolving scientific field
that has the potential to cooperate with humans or
replace humans in many tasks. They can function in
various environments, such as crowded warehouses,
rugged terrain like Mars, and hazardous areas like
earthquake disaster zones. When classifying mobile
robots based on their movement systems, there are sev-
eral broad categories: manipulators, land-based robots,
airborne robots, waterborne robots, and others [45].
The unique environments and physics involved in each
category require special considerations. For example,
waterborne robots must account for fluid dynamics
[46], buoyancy, water currents, and pressure differ-
ences [47], while airborne robots, including Uncrewed
Aerial Vehicle (UAV), must consider air resistance,
turbulence, and aerodynamics [48]. Additionally, these
airborne robots encounter significant challenges in
terms of safety, scalability, cost-efficiency, and eco-
logical considerations during hardware testing phases
[49]. Land-based robots, on the other hand, are af-
fected by gravity, wheel friction, and terrain roughness
[50]. Unlike their airborne and waterborne counter-
parts, which require consideration of fluid dynamics,
buoyancy, and aerodynamics, land-based robots are
primarily influenced by gravity, wheel friction, and
terrain roughness, necessitating a different simulation

approach. Within the land-based robot category, we
propose four additional subcategories. This classifica-
tion aids in refining the focus of our systematic litera-
ture review:

1) Wheeled mobile robots (WMR): These robots
predominantly use wheels for locomotion, enabling
them to traverse various terrains.

2) Walking (or legged) mobile robots: These
robots are equipped with legs or walking mechanisms,
providing them with the ability to navigate through
challenging environments.

3) Tracked slip/skid locomotion: Some land-based
robots employ tracks instead of wheels, enhancing
their traction and manoeuvrability on various surfaces.

4) Hybrid: Certain land-based robots incorporate a
mix of different locomotion systems to achieve versa-
tile movement capabilities.

Our team spearheads a project, focusing on mod-
elling multi-agent interactions in near-real environ-
ments, particularly during extreme events, to study
uncertainty. This project has highlighted the need for
a comprehensive understanding of the current state
of simulation technologies, specifically those that can
accurately replicate real-world conditions for WMRs.
The use of WMRs offers numerous benefits to our
lives, ranging from autonomous vehicles and ware-
house operations to life-saving rescue missions. These
systems can automate or aid in monotonous, danger-
ous, or difficult tasks. During the COVID-19 pan-
demic, wheeled robots have been used for critical
functions, such as delivering food to quarantined in-
dividuals and disinfecting public areas. However, the
deployment of this kind of robot also brings about
new and unexpected challenges, especially when op-
erating under extreme conditions such as earthquakes.
Despite these challenges, WMRs can be instrumental
in scenarios that demand risk reduction or potential
life-saving interventions [2]. Their capability to tra-
verse various terrains, from smooth flat surfaces to
uneven landscapes, grants them a significant degree
of adaptability. This makes WMRs particularly well-
suited for a multitude of applications including, but not
limited to, exploration missions, efficient logistics in
warehouses, precise operations in agriculture, continu-
ous surveillance in security-sensitive areas, and remote
interventions in disaster-stricken zones. As such, the
potential and versatility of WMRs underscore their
increasing importance in our evolving technological
landscape. Based on the discussion above, this paper
focuses its analysis on WMRs, given their broad appli-
cability and pivotal role in advancing mobile robotics.

Beyond the advantages provided by AI training with
purely software simulation, another important topic in
robotic development is the integration of Hardware-In-
the-Loop (HIL) and Human-In-The-Loop (HITL) test-
ing. Testing control strategies directly on real robots
can often be time-consuming, expensive, and pose
higher risks. HIL simulations can mitigate these chal-
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lenges, replicating real-world conditions and offering
more accurate results [51]. This method allows for
earlier problem detection and resolution in the devel-
opment process, consequently reducing testing costs.
Additionally, HIL ensures the smooth integration of
various hardware components. It helps developers con-
firm the proper functioning of control systems, actua-
tors, and sensors before they are incorporated into the
complete robot setup [52]. On the other hand, HITL
introduces a human element into the development loop.
Robots can quickly adapt to changing situations, cor-
rect errors, and perform better when given direct hu-
man input. Over time, the robot refines its behaviour to
the point where human intervention becomes minimal
[53]. This synergy between hardware, software, and
human expertise accelerates the transition from simu-
lations to real-world applications.
To simulate the dynamics of wheeled robots, var-

ious physics engines are typically employed, includ-
ing ODE, DART, MuJoCo, Bullet, SimBody, PhysX,
or RaiSim. These engines focus on solving problems
related to rigid articulated bodies, collisions, and con-
tacts [46]. In Table. 1, a comprehensive list of plat-
forms that are widely used for the simulation of robots
and can integrate with ROS has been compiled. The
various simulation platforms are examined and com-
pared based on several metrics, including the supported
physics engine, programming languages, key features,
and open-source availability. Among the most versatile
platforms are Gazebo and CoppeliaSim (formerly V-
REP), supporting multiple physics engines and pro-
gramming languages such as Python and C++. Gazebo
stands out for its realistic physics and graphics, exten-
sibility through plugins, a large library of models and
environments, as well as strong community support.
CoppeliaSim (formerly V-REP) is notable for facili-
tating simulation of complex kinematics and dynam-
ics, and offering extensive sensor and actuator sup-
port. Platforms like MuJoCo and Webots offer spe-
cific strengths, such as fast and accurate physics and
reinforcement learning integration for MuJoCo, and a
large library of robot models andweb-based simulation
for Webots. ARGoS is particularly tailored for large-
scale multi-robot swarm simulation, while CARLA
and USARSim excel in simulating realistic driving and
urban environments. RaiSim and NVIDIA Isaac Sim
offer high-fidelity physics and advanced features like
GPU acceleration and deep learning support. Unity
and Unreal Engine, while not traditionally considered
robotic simulators, are acknowledged for their high-
quality graphics and realistic environments. Overall,
the choice of simulation platform would be dependent
on specific project requirements, such as the type of
robotics application, the required level of physical re-
alism, programming language support, or specialised
simulation capabilities.
Considering the described context, this study aims

to provide answers or insights to the following research

questions based on our review of the relevant works:
RQ1: What are the application areas facilitated by

AI-driven methodologies in the domain of WMRs?
RQ2: What are the primary perception and control

objectives of WMRs, and how does AI contribute to
their achievement?

RQ3:Which ROS-enabled WMRs are employed in
AI-driven perception and control research?

RQ4: What ROS-compatible simulation platforms
are available for WMRs?

RQ5: How significant are HIL and HITL testing
methodologies in the design process of WMRs?

Consequently, this systematic literature review ad-
dresses the following critical aspects:

1) An exploration of the diverse applications of
WMRs, reflecting the increasing interest in this subject
area and the substantial increase in research.

2) A detailed analysis of the main perception and
control tasks of WMRs, outlining the various AI
approaches employed and offering insights into the
methodologies and techniques used.

3) Identification of themost commonly usedWMRs,
providing valuable reference information for the field.

4) A breakdown of simulation platforms enabled by
ROS, highlighting the dominance of the Gazebo sim-
ulator and the emergence of game engines in robotic
simulators.

5) An examination of Hardware-in-the-Loop (HIL)
and Human-in-the-Loop (HITL) testing methodolo-
gies, underscoring their potential in the design process
of WMRs.

This paper is organised into five sections: Section II
outlines the method used for the literature review. Sec-
tion III presents the findings derived from the review.
Section IV answers the posed research questions and
discusses the gaps found in current research. Finally,
Section V presents our conclusions.

II. METHOD
This paper was conducted using the Systematic Litera-
ture Review (SLR) approach, following the Preferred
Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) guidelines [54]. A SLR evaluates
and analyses available research on a certain topic area
or interest phenomenon. The SLR aims to provide a fair
review of a research issue by employing a reliable and
rigorous technique. The SLR guidelines are separated
into three phases: planning the review, conducting the
review, and reporting the review.

A. PLANNING THE REVIEW
The initial phase of the SLR involves planning the
review, which includes determining and defining the
review’s execution process to ensure its validity [54]
After formulating the research questions, the scope of
the review was determined by employing the PICOC
method introduced by Petticrew and Roberts [55]:
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TABLE 1. Comparison of Simulation Platforms

Name Physics Engine Programming
Language

Key Features Open
Source

Gazebo ODE, Bullet,
Simbody, DART

• Python
• C++

• Realistic physics and graphics
• Extensibility with plugins
• Large library of models and environments
• Community support and active development

Yes

MuJoCo MuJoCo • Python
• MATLAB
• C++

• Fast and accurate physics
• Seamless Reinforcement Learning (RL) Integration
• Flexible API for customization
• Support for soft bodies and deformable objects

Yes

Webots ODE • Python
• MATLAB
• C++
• C
• Java

• Large library of robot models and environments
• Offers web-based simulation
• User-friendly interface
• Modular and user-extensible design

Yes

CoppeliaSim
(V-REP)

Bullet, ODE,
MuJoCo, Vortex
Studio, Newton
Dynamics

• Python
• MATLAB
• C++
• Lua

• Simulation of complex kinematics and dynamics
• Fast algorithm development
• Remote API and connectivity
• Wide range of sensor and actuator support

Free and
paid ver-
sion

ARGoS Bullet, ODE • Python
• C++
• Lua

• Large-scale multi-robot swarm simulation
• Extensibility with plugins
• Customizable robot models
• Easy experiment and simulation setup

Yes

PyBullet Bullet • Python
• MATLAB
• C++
• Java

• Easy integration with machine learning libraries
• High performance and efficiency
• Diverse robotics and soft body simulation
• Real-time physics debugging

Yes

CARLA Unreal Engine 4
(PhysX), Project
Chrono

• Python
• C++

• Autonomous driving scenario definition and evalua-
tion

• OpenDRIVE road network generation
• Dynamic and realistic traffic simulation
• Comprehensive sensor suite

Yes

RaiSim RaiSim • Python
• C++

• Advanced sensor simulation
• High-fidelity physics
• Modular and lightweight architecture
• Efficient GPU acceleration

No

Project Chrono Project Chrono • Python
• C++

• Multibody dynamics and granular simulation
• High-performance parallel computing
• Advanced vehicle dynamics
• Realistic terrain and geological simulation

Yes

USARSim Unreal Engine 2
(PhysX)

• Python
• C++

• Realistic urban environment simulation
• Wireless communication simulation
• Sensor and actuator fault simulation
• Extensible architecture

Yes

OpenRAVE ODE, Bullet • Python
• MATLAB
• C++

• Focus on motion planning and manipulation
• Extensive kinematics and dynamics solvers
• Robust collision detection and grasping support
• Support for multi-robot simulations

Yes

AirSim Unreal Engine 4
(PhysX)

• Python
• MATLAB
• C++

• Photorealistic graphics and environments
• Dynamic weather and lighting conditions
• Easy integration with Machine Learning libraries
• Hardware-in-the-loop (HIL) simulations

Yes

SOFA SOFA • Python
• C++
• XML

• Advanced multi-physics simulation
• Modular and extensible architecture
• Real-time interaction and haptics support
• Parallel computing and GPU acceleration

Yes

NVIDIA Isaac
Sim

PhysX 5 • Python
• C++

• Physically accurate simulations
• High-Quality Visuals and Rendering with NVIDIA

RTX
• Deep Learning and Reinforcement Learning Support
• Integration with the NVIDIA Omniverse ecosystem

Yes

Unity PhysX • C# • Real-Time Physics Simulation
• High-Quality Graphics and Realistic Environments
• Machine Learning Integration
• Vast Asset Store and Community Support

Free and
paid ver-
sion

Unreal Engine Unreal Engine
(PhysX)

• C++
• Blueprints

visual
scripting

• High-fidelity visuals and realistic environments
• Robust physics simulation
• Large library of high-quality assets
• Physically based materials and material editor

Free and
paid ver-
sion
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• Population (P): ROS-enabled simulators for
WMRs.

• Intervention (I): Utilising ROS-enabled simula-
tors in conjunction with AI-based techniques.

• Comparison (C):Assessing and comparing vari-
ous simulation platforms for AI-based perception
and control of WMRs.

• Outcome (O): Identifying research gaps and
trends in the field of ROS-enabled simulators for
WMRs, with a specific focus on the utilisation of
AI techniques for perception and control tasks.

• Context (C): Investigating WMRs across varied
applications.

Based on the PICOC framework, the inclusion and
exclusion criteria for selecting relevant papers that an-
swer the research questions are defined as follows.

• Inclusion Criteria: Papers written in the English
language AND papers that have been published
within the last ten years AND papers published in
peer-reviewed conference proceedings, journals,
or technical reports AND papers that report the
simulation of wheeled robots AND papers that
utilise ROS AND Papers that implement AI tech-
niques.

• Exclusion Criteria: Papers that focus solely on
physical robot design andmechanical engineering
OR papers on mobile robots using locomotion
forms other than wheels OR papers on general
AI or robotics theories not specific to WMRs OR
papers focusing entirely on real-world testing and
deployment of WMRs.

In order to define the scope of our SLR, we have
identified four key domains that intersect to form the
focus of our research, as illustrated in Figure 1. These
domains are: ROS, AI, WMR and Simulation. Our
review is specifically tailored to papers that discuss
the application of AI-based methods for the perception
and control of wheeled mobile robots operating within
ROS-enabled simulators. While there are various plat-
forms for robot control, types of robots, and simulation
environments, our review narrows down the scope to
this specific intersection to provide a comprehensive
understanding of the advancements in AI-based per-
ception and control mechanisms for wheeled mobile
robots in ROS-enabled simulation environments.

B. SEARCH METHODOLOGY
When conducting a SLR, it is crucial for the appropri-
ate databases relevant to the research topic to be care-
fully selected. In this paper, the IEEE Digital Library,
ScienceDirect, SpringerLink, and the ACMDigital Li-
brary were utilised. The selection of these databases
was based on their reputation and prominence in the
research field.
To optimise the efficacy of our SLR, we devised a

search strategy comprising five major thematic sec-
tions, each encompassing a range of specific search
terms. The first section focuses on diverse categories

FIGURE 1. The Scope of Papers Included in the Systematic
Literature Review: This Venn diagram illustrates the overlapping
academic fields of Robot Operating System (ROS), Artificial
Intelligence (AI), Wheeled Mobile Robots (WMR), and Simulation.
Only papers that intersect across all these domains are
considered for review.

of WMRs. The second section is about artificial in-
telligence techniques. The third section is relevant to
perception and control methodologies. The fourth sec-
tion is linked to simulation platforms. The final section
emphasises the use of ROS in the research context.
Within each major thematic section, search terms are
interlinked using "OR" statements to ensure compre-
hensive coverage, whereas "AND" statements are used
to connect the sections. This methodology enables the
identification of papers that match at least one search
term from each section, thereby fostering a structured
and inclusive approach to sourcing pertinent studies for
our SLR. The detailed list of search terms, reflective of
this structured approach, is presented in Table 2

The wildcard character, denoted by the asterisk
(*), is incorporated in the designated keyword search.
The inclusion of this wildcard character enhances the
search query’s range and flexibility by allowing it to
stand in for one or more characters. For instance, in-
putting "robot*" in the search box will yield results
containing terms like "robot," "robotics," and "robots."
It is worth noting that the ScienceDirect database im-
poses restrictions on the advanced search queries that
can be used. Consequently, the following search string
was used for that database instead: (robot OR agent)
AND (learning OR intelligence OR AI) AND (control
OR perception) AND simulator AND ROS.

C. LITERATURE SELECTION
The data compilation process in this research followed
a phased approach guided by the PRISMA flow dia-
gram [56], [57], as shown in Figure 2. This diagram
provides a comprehensive overview of the SLR process
and the actions taken at each stage.
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TABLE 2. Logical grid of search terms

Domain Search Term

Wheeled Mobile
Robots

mobile robot* OR
rover* OR
omnidirectional mobile* OR
unmanned robot* OR
ground robot* OR
wheeled robot* OR
autonomous robot* OR
mobile ground OR
autonomous ground vehicle* OR
multi-agent system OR
mobile agent OR
automated guided vehicle* OR
unmanned ground vehicle*

Artificial Intelligence
Techniques

artificial intelligence OR
AI OR
*reinforcement learning OR
intelligent* OR
machine learning

Perception and
Control

Methodologies

control OR
path planning OR
trajectory planning OR
motion planning OR
multi-objective optimisation OR
object recognition OR
perception OR
localisation OR
navigation OR
SLAM OR
obstacle avoidance OR
object detection OR
collision avoidance

Simulation Platforms

digital twin OR
physics engine OR
computer game OR
game engine OR
simulat* OR
sim-to-real OR
sim2real

Robot Operating
System

robot operating system OR
ROS

1) In the initial stage of identification, a search was
conducted using the specified search string described
in the previous subsection. A total of 2525 papers were
initially identified. However, 65 papers were excluded
due to duplicate reports or being part of conference
proceedings that later resulted in full articles.
2) The next stage involved screening the remaining

records based on their titles and abstracts, resulting in
the exclusion of 2250 papers. The main reasons for
exclusion were as follows: A) Papers related to non-
wheeled ground (n=16), airborne (n=94), waterborne
(n=53), and arm (n=93) robotics topics. B) Papers that
did not utilise the ROS (Robot Operating System) plat-
form (n=67). D) Papers that did not employ AI meth-
ods (n=87). F) Papers that did not utilise a simulator
(n=161). E) Irrelevant papers or other miscellaneous
reasons (n=1679).
3) In the subsequent stage, 210 papers were con-

sidered eligible for further assessment. However, five
of these papers were excluded because the PDF files
could not be found, and three were excluded because
they were written in languages other than English.
4) In the last stage, the remaining reports were

thoroughly assessed for eligibility, resulting in the ex-
clusion of 19 additional papers. The main reason for
exclusion at this stage was that after reviewing the
content, it was discovered that some papers did not
explicitly mention the specific methods for perception
and control (n=11), and some papers claimed in their
abstracts to utilise AI methods but upon closer exami-
nation, no such methods were found within the papers
themselves (n=8). In the end, 186 papers were deemed
suitable for the final stage of the review.

Figure 3 categorises the selected papers by their
year of publication, spanning from 2012 to 2023. It is
important to note that the data for 2023 includes only
the publications from the first six months. The trend
clearly indicates a marked increase in publications over
recent years, underscoring the growing academic in-
terest in this field. Within the collected works, there
are 101 conference papers and 85 journal articles. The
near-even split between conference papers and journal
articles suggests a balance between the urgency to
publish new findings and the need for thorough, peer-
reviewed research in the field.

D. THREATS TO VALIDITY
A systematic review inherently offers the potential for
an unbiased analysis, however, certain risks and chal-
lenges may influence the outcome and introduce bias
into the synthesised conclusions. The following points
enumerate some of these threats:

1) Selection of digital libraries:Despite our careful
selection of widely recognised digital libraries, the
confinement to a limited number may exclude relevant
papers available elsewhere. An expansion to include
additional libraries could enlarge the pool of articles,
yet it simultaneously complicates the task of analysing
all the results within a manageable timeframe.

2) Difficulties in quality assessment: The quality
assessment phase presents several challenges that may
impede the accurate answering of research questions.
Such difficulties stem from multiple factors, includ-
ing poor writing quality, inefficient presentation of
information, issues with confidentiality, and the risk
of subjective judgement. For example, a paper might
discuss a specific perception method in the abstract but
may not furnish sufficient detail in themain body of the
text.

3) Formulation of search terms: Though prelimi-
nary tests were conducted to refine the search strategy,
the task of defining the optimal search string remains
intricate. Libraries like ScienceDirect may necessitate
modifications to the search string, owing to inherent
limitations. Such alterations, while sometimes essen-
tial, carry the risk of introducing irrelevant results
into the review. This highlights the delicate balance
required in generating search strings that are both in-
clusive and specific, a challenge that has implications
for the reliability and validity of the entire review.
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PRISMA Flow Diagram

Records identified through
database searching: (n = 2520)

Additional records identified
through other sources: (n = 5)

Total records identified:
(n = 2525)

Records screened:
(n = 2460)

Records sought for retrieval:
(n = 210)

Records assessed for eligibility:
(n = 205)

Studies included in the review:
(n = 186)

Records removed before
screening (n = 65):

Duplicate records removed (n = 62)
Conference proceedings with a

subsequent full article paper (n = 3)

Irrelevant records excluded:
(n = 2250)

Records not retrieved:
Paper not found (n = 3)
Other language (n = 2)

Records excluded:
Does not mention the specific

methods for perception
and control: (n = 11)

No AI techniques were found: (n = 8)
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FIGURE 2. PRISMA Flow Diagram illustrating the four key stages of literature selection for this systematic review: Identification,
Screening, Eligibility, and Inclusion. The diagram details the initial number of records, exclusions at each stage, and the final count of
papers included in the review, offering a transparent view of the methodology employed.
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FIGURE 3. Number of Published Papers by Year: This figure
displays the trend in the number of published papers related to
ROS-Enabled Simulators for AI-Enhanced Wheeled Mobile Robots
from the year 2013 to 2023. The y-axis represents the total count
of papers, while the x-axis marks the publication years. For the
year 2023, the green bar represents actual data from the first six
months.

III. FINDINGS
In this section, the results of our comprehensive re-
search are presented. We organise and discuss all find-
ings gathered from our database searches in relation to
our specific research objectives.

A. APPLICATION AREAS OF AI-BASED TECHNIQUES
IN WMR PERCEPTION AND CONTROL
This section provides an overview of the diverse do-
mains in which AI techniques are utilised to aug-
ment the control and perception capabilities of WMRs.
Based on the literature reviewed, encompassing a total
of 97 papers, the application areas for AI-enhanced
WMRs controlled with the Robot Operating Sys-
tem (ROS) can be divided into thirteen distinct cat-
egories, as outlined in Table 3. Among the identi-
fied applications, "Research" emerged as the predom-
inant category, encompassing 35% (34 out of 97)
of the literature. Such predominance is anticipated,
given that this category encapsulates papers empha-
sising broad-spectrum algorithmic development and
techniques with generalised applications, though not
necessarily tethered to a specific use-case within those
studies. Beyond research, the "Automotive" sector con-
stituted 20.6% (20 out of 97) of the citations, trailed by
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"Healthcare" at 13.4% (13 out of 97).
The significant representation of the Research cat-

egory underscores the ongoing exploration and inno-
vation within AI methodologies, demonstrating the
field’s dynamic nature and its potential for wide-
ranging applications. The prominence of Automotive
and Healthcare sectors highlights the critical impact of
AI in enhancing safety, efficiency, and accessibility,
addressing some of the most pressing challenges in
these areas. These statistics not only reflect the current
state of research but also hint at the evolving trends in
the application of AI technologies in WMRs, suggest-
ing a broadening scope that may encompass even more
diverse fields in the future.

B. AI APPROACHES ADOPTED IN WMRS
The purpose of this section is to provide a systematic
classification of AI techniques employed in research
focusing on ROS-enabled WMRs. Our aim is to high-
light the advancements and applications of AI methods
in the development of perception and control systems
for these robots. Based on our comprehensive literature
review, the research is categorised into three distinct
areas :
1) Perception and Safety: This domain empha-

sises the robot’s capability to interpret its environment,
recognise objects, and ensure safety. These functional-
ities are important for real-time decision-making and
circumventing obstacles or hazards.
2) Path Planning: research in this category focuses

on empowering robots to devise efficient and safe
trajectories, factoring in dynamic environments and
unforeseen challenges.
3) Control Mechanisms: This area is dedicated to

the algorithms and techniques that regulate the robot’s
movements, ensuring stability, precision, and respon-
siveness.
To provide a clearer understanding of the interplay

between these areas, Figure 4 offers a graphical illus-
tration. Moreover, to provide more detail on the AI
techniques and their applications, Table 4 presents a
breakdown of each category, detailing the specific AI
techniques and their associated literature references.
The perception domain primarily leans on AI algo-

rithms that harness data from sensors such as cam-
eras, depth sensors, and Light Detection and Ranging
(LiDAR) to empower the robots with environmental
comprehension. Some of the primary tasks within this
domain include object detection, obstacle awareness
and gesture recognition. By relying on visual inputs
from cameras, these functionalities enable robots to
interact effectively with their environments. Convolu-
tional Neural Networks (CNN) serve as the backbone
for these tasks within modern robotics, with the You
Only LookOnce (YOLO) suite of algorithms emerging
as particularly dominant [31], [62], [103]. The YOLO
algorithms’ efficiency in facilitating real-time process-
ing has made them popular in robotic applications.

Per cept ion

What sensor y information is 
the robot per ceiving and 

interpreting?

Cont r ol

What is the next input for  the 
robot actuator s to fol low  the 

planned tr ajector y?

Path Planning 

What is the optimal path for  
the robot in the perceived 

environment?

Wheeled Mobi l e Robot

FIGURE 4. Conceptual Framework for AI-Driven Decision-making
in ROS-Enabled WMRs. The diagram illustrates the interconnected
nature of sensory interpretation, trajectory optimisation, and
actuator control, emphasising their cyclical relationship in the
functioning of an autonomous WMR.

Object tracking, another core task within the percep-
tion domain, can also take advantage of YOLO algo-
rithms when paired with other methods like Kernel-
based Correlation Filters (KCF) [104]. However, the
landscape here is more varied, with other algorithms
such as Continuous Adaptive Mean Shift (CAMShift)
[93] and Actor-Critic Reinforcement Learning [140]
being actively employed. Additionally, there is an in-
creasing emphasis on risk assessment in the literature,
highlighting the efforts directed at algorithms that can
evaluate and prevent potential hazards in a robot’s
operational environment.

Another very prominent perception task is Simul-
taneous Location And Mapping (SLAM), which fo-
cuses on the robot’s ability to simultaneously create a
map of an environment while also estimating its own
position within that environment. Given the real-time
requirements of robotics, streamlined and efficient
methodologies are essential. To this end, techniques
like Rao-Blackwellized Particle Filters (RBPF) [58],
Extended Kalman Filters (EKF) [116], and Iterative
Closest Point (ICP) [132] have become go-to choices
for SLAM implementations. For a comparative insight
into SLAM algorithms, [58] offers an instrumental
study, assessing the computational efficiency of four
widely adopted algorithms (Gmapping, Hector SLAM,
Karto SLAM, and RTAB) on an autonomous vehicle.
It should be noted that GMapping is a highly efficient
Rao-Blackwellized particle filter designed for learning
grid maps from laser range data [177].

Path planning is an essential component of robotic
navigation that bridges the gap between perception and
control mechanisms. This domain delves into strate-
gising routes a robot should undertake, considering
both the environmental constraints and the robot’s ob-
jectives. It is a discipline that oscillates between pure
algorithmic approaches and adaptive learning-based
methodologies.

For known environments where the terrain and
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TABLE 3. Application Areas of AI-based WMRs

Application Items
Automotive • Self-parking applications under SAE (Society of Automotive Engineers)-Level 3 of vehicle automation [58]

• Advanced driving assistant system (ADAS) + neuroscience for enhanced vehicle control [59]
• Path planning application in unknown and complex environments [2]
• Autonomous driving applications [21], [33], [37], [60]–[66]
• Intelligent Transportation Systems (ITS) [67]
• Gesture recognition for human-vehicle interaction [68]
• All-terrain vehicle (ATV) with autonomous navigation and teleoperation [69]
• Robust localisation of Autonomous Cars [70]
• Socially aware robot navigation [34], [71], [72]

Research • Digital twin models in Cyber-Physical Manufacturing Systems (CPMS) [73], [74]
• Analog Twin (AT) Framework for Human and AI Supervisory Control [75]
• Experimentation in a remote laboratory setting [76]
• Multi-robot localization and mapping [23], [77], [78]
• Learning from observation [25]
• Mobile manipulator positioning for object pick-up [26]
• Navigation and obstacle avoidance [35], [36], [79]–[85]
• Autonomous exploration in indoor environments [30], [86]–[88]
• Immersive telepresence [89]
• The specific application was not mentioned [27]–[29], [32], [53], [90]–[95]

Healthcare • Autonomous Wheelchair [24], [96]–[98]
• Rescue and healthcare services in disaster scenarios [99]
• Monitoring and visualisation of ROS data in healthcare [100]
• Assistance for elderly people in healthcare settings [101]
• Human-vehicle interaction in healthcare [68], [102]
• Long-term care facilities (LTCFs) [31], [103]
• Autonomous pedestrian following (following medical staff) [104]
• Medication delivery and vital signs monitoring [105]

Warehouse and
logistics

• Warehouse management in retail and manufacturing [106]
• Fleet management and luggage transport robots [107]
• Manufacturing logistics based on the Open Platform for Innovations in Logistics (OPIL) [108]
• Intralogistics applications such as commissioning [109]
• Autonomous pedestrian following (following workers in a warehouse and delivery personnel in logistics) [104]
• sustainable operation of multiple Self-Guided Vehicles (SGVs) in a dynamic manufacturing environment [110]
• Navigation in congested environments [111]

Manufacturing • Remote inspection of industrial plants [112]
• Asymmetric threat protection [113]

Agriculture • Protecting agricultural fields [114]
• Cooperative localization in agriculture [115]
• Autonomous navigation in vineyards for pruning and harvesting [116]
• Autonomous maize sowing in agricultural fields [117]

Rescue and
disaster response

• Urban search and rescue (USAR) [118]–[121]
• Assisting in disaster scenarios through various tasks [5]
• Multi-robot patrolling [122]
• Autonomous pedestrian following (following security personnel in a patrol) [104]

Extreme
environments

• Planetary exploration [123], [124]
• Navigating hazardous environments [125]
• Inspecting confined spaces (subterranean gold mines, dam galleries, and pipes) [126], [127]

Military • Environmental exploration and destruction in uncertain environments [22]
Education • Education and industrial applications [74]

• Manufacturing education [128]
Entertainment • Entertainment applications [129]
Building and
construction

• Robotized facility inspection in construction and building maintenance [130]

Household • Lawn mowing in irregular environments. [131]

obstacles are static, deterministic algorithms such
as Dijkstra’s algorithm [119], [120], [151] and A*
[71], [156]–[158] are often employed. Their reliabil-
ity and predictability make them suitable for tasks
where deviations from a set path can be costly.
However, in unpredictable or dynamically changing
environments, robots need to be more adaptable.
The combination of reinforcement learning and plan-
ning techniques has demonstrated potential. Methods
such as Deep Deterministic Policy Gradient (DDPG)
[15], [146], Asynchronous Advantage Actor Critic
(A3C) [148], SARSA (State-Action-Reward-State-

Action) [152], and Socially Attentive Reinforcement
Learning star (SARL*) [150] allow robots to learn
and adjust their paths based on interactions with their
surroundings.

Collision avoidance is a critical sub-domain within
path planning. The balance between swift navigation
and safety is crucial. Techniques like Fuzzy inference
[13], [98], Dynamic-Window Approach (DWA) [76],
[159], and some RL approaches [99] have come to the
forefront in this regard. They ensure that while a robot
remains agile in its movements, it doesn’t endanger its
integrity or that of its environment.
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TABLE 4. AI Techniques

Category AI Techniques
Perception and Safety
1 - Simultaneous Localization and
Mapping (SLAM)

RBPF1 [58], EKF2 [116], ICP3 + SVM4 [132], 2D multi-SLAM [77], GMapping [87], [88], [105],
FNN5 [27], Visual-SLAM + RTAB-Map6 [126], RTAB-Map [94], Cartographer [65], Monocular
SLAM + RL [36], KimeraMulti [133]

2 - Object Detection YOLOv47 [62], [103], YOLOv3 [31], [59], [62], YOLOv2 [134], PointNet [135], CNN8 [21], [23],
[136], SVM [137], MobileNet [138], YOLOv2 + JPDA9 + IMM10 [139]

3 - Object Tracking CAMShift11 [93], HOG12 + SVM [129], Actor-Critic RL [140], YOLOv3-Tiny + KCF13 [104]
4 - Instance Segmentation Mask R-CNN [30]
5 - Gesture Recognition YOLOv5 + k-means clustering + attention mechanism [68], OpenPose [28]
6 - Out-Of-Distribution Detection VAE14 [32]
7 - Obstacle Awareness and Risk
Assessment

YOLOv5 [60], Spiking Neural Network [141], A* or Dijkstra’s algorithm + costmaps [125], Neural
Network [34]

8 - Sensor Fusion DQL15 [142]
9 - Target Search Vacancy chain + DQL [22]
10 - Point Cloud Completion GRNet16 [30]
Path Planning
1 - Path Planning in Unknown En-
vironments

SARSA17 + RRT18 [2], RRT [17], [143], [144], DDPG19 [15], [145], [146], GFE20 [147], A3C21

[148], Dyna-Q algorithm [11], [149], SARL*22 [150], ROAMFREE [69], Two-stage stochastic
programming [81], TEB23 + A* [95], [127]

2 - Global Path Planning IDE24 [16], Dijkstra’s algorithm [119], [120], [151], SARSA [152], DQL [8], [153], [154],
Evolutionary algorithm [5], [33], [35], Hierarchical-DDPG [155], A* algorithm [71], [127], [156]–
[158], ARA*25 [84], Theta* + DWA26 [89], G-RRT*27 [83]

3 - Collision Avoidance DRL28 [99], RRT [144], Fuzzy inference [13], [98], DWA [76], [159], [160], Particle Filter [161],
AMARL29 [162], VFH+30 [76], SND31 [76], A-FGM32 [85], CNN [163], [164]

4 - Navigation CNN + MGRL33 [165], RL + APPL34 [53], DWA [166], BDI35 [79], [123], ANN36 + DPP37 [24],
B-spline curves [82], Petri Nets [111], PID38 controller + RANSAC39 [117], DRL [37], PaCcET40

[72], AMCL41 [167]–[172],
Control Mechanisms
1 - Motion Control RBFNN42 [115], ANN [173], Fuzzy inference [174], DDPG [51], Kalman Filters [86], B-RV43

[131], TD344 [26], Evolutionary algorithm [35]
2 - Teleoperation LSTM45 [102]
3 - Collaborative Control ACT-R46 [97], DTW47 [29], SMM48 [124]
4 - Voice Commands Control NLP49 [28], [175], [176]

1 RBPF: Rao-Blackwellized particle filter
2 EKF: Extended Kalman Filter
3 ICP: Iterative Closest Point
4 SVM: Support Vector Machine
5 FNN: Fuzzy Neural Network
6 RTAB-Map: Real-Time Appearance-Based Mapping
7 YOLO: You Only Look Once
8 CNN: Convolutional Neural Network
9 JPDA: Joint Probabilistic Data Association
10 IMM: Interactive Multiple Model
11 CAMShift: Continuous Adaptive Mean Shift
12 HOG: Histogram Of Gradient
13 KCF: Kernelized Correlation Filters
14 VAE: Variational AutoEncoder
15 DQL: Deep Q-Learning
16 GRNet: Gridding Residual Network
17 SARSA: State-Action-Reward-State-Action
18 RRT: Rapidly exploring Random Tree
19 DDPG: Deep Deterministic Policy Gradient
20 GFE: Greedy Frontier Exploration
21 A3C: Asynchronous Advantage Actor-Critic
22 SARL*: Socially Attentive Reinforcement Learning star
23 TEB: Timed Elastic Band
24 IDE: Improved Differential Evolution
25 ARA*: Anytime Repairing A*

26 DWA: Dynamic-Window Approach
27 G-RRT*: Goal-oriented Rapidly Exploring Random Tree
28 DRL: Deep Reinforcement Learning
29 AMARL: Assured Multi-Agent Reinforcement Learning
30 VFH+: Vector Field Histogram Plus
31 SND: Smoothed Normalized Distance
32 A-FGM: Adaptive Follow the Gap Method
33 MGRL: Multi-Goal Reinforcement Learning
34 APPL: Adaptive Planner Parameter Learning
35 BDI: Belief, Desires and Intentions
36 ANN: Artificial Neural Network
37 DPP: Dynamic Policy Programming
38 PID: Proportional Integral Derivative
39 RANSAC: Random Sample Consensus
40 PaCcET: Pareto Concavity Elimination Transformation
41 AMCL: Adaptive Monte Carlo Localisation
42 RBFNN: Radial Basis Function Neural Networks
43 B-RV: Boustrophedon motions and Rapid Voronoi diagram
44 TD3: Twin-Delayed Deep Deterministic policy gradient
45 LSTM: Long Short-Term Memory
46 ACT-R: Adaptive Control of Thought-Rational
47 DTW: Dynamic Time Warping
48 SMM: Shared Mental Model
49 NLP: Natural Language Processing
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Navigation serves as an integral component, bridg-
ing path planning and control mechanisms by com-
bining varied techniques to ensure robust movement
within diverse environments. There are hybrid ap-
proaches to navigation, such as the combination of
Convolutional Deep Neural Networks (CDNN) and
Multi-Goal Reinforcement Learning (MGRL) [165],
and the synergy between Artificial Neural Networks
(ANN) and Dynamic Policy Programming (DPP)
[24]. Algorithms like the Dynamic-Window Ap-
proach (DWA) [166] and Deep Reinforcement Learn-
ing (DRL) [37] further enhance the robot’s adapt-
ability and responsiveness to dynamic scenarios. In-
corporating the Belief, Desires and Intentions (BDI)
model [79], [123], robots can process and react to
their environments in more sophisticated and nuanced
ways. Adaptive Monte Carlo Localization (AMCL)
also plays a critical role in precise location estimation,
vital for effective navigation and path planning [167]–
[172]. Furthermore, strategies using B-spline curves
[82], Petri Nets [111], and the use of PID controllers
in conjunction with the RANSAC method [117] high-
light the diverse range of tools available to address the
complex challenges of robotic navigation.
Control mechanisms serve as the critical interface

between a robot’s planned trajectory formed through
the understanding of its environment and its subse-
quent actions. These systems leverage AI techniques to
ensure that a robot’s movements are precise, fluid, and
aligned with its perceived surroundings and intentions.
In themotion control sector, traditional approaches like
Fuzzy inference systems [174] coexist with more mod-
ern methodologies, such as Deep Deterministic Policy
Gradient (DDPG) [51] and Radial Basis Function Neu-
ral Networks (RBFNN) [115]. These approaches aim
to provide both deterministic and adaptive strategies,
catering to scenarios that require fixed trajectories and
those that demand on-the-fly adjustments.
Teleoperation represents the attempts to improve

distant control, often in situations where human inter-
vention is hazardous, with Long Short-Term Memory
(LSTM) networks [102] being the prevalent choice.
Collaborative control, on the other hand, captures the
spirit of modern robotics, emphasising cooperative
behaviour, often between multiple robots or between
humans and robots. Techniques such as the Adaptive
Control of Thought-Rational (ACT-R) [97], Dynamic
Time Warping (DTW) [29], and Shared Mental Model
(SMM) [124] echo the focus on synchronous opera-
tions and shared responsibilities.
Voice command control, powered primarily by Nat-

ural Language Processing (NLP) [28], [175], [176],
encapsulates the convergence of robotics with every-
day human life. As robots become more integrated into
daily routines, the need for intuitive interfaces becomes
paramount. Voice commands offer a user-friendly way
for individuals to interact with robots, transforming
them into dynamic assistants that understand and re-

spond to human speech.
In summary, a robot’s intelligence relies on percep-

tion and path planning, but control mechanisms are
necessary to translate that intelligence into meaningful
actions in the real world.

C. ROS-ENABLED WMRS EMPLOYED IN RESEARCH
In Table 5, the WMRs referenced in the reviewed
literature are categorised and summarised into three
principal categories: Mobile Robots, Self-driving Cars,
and Wheelchairs. Mobile Robots dominate the litera-
ture, representing 83% (107 out of 129) of the reviewed
papers, highlighting their significant role in current re-
search. In contrast, Self-driving Cars and Wheelchairs
account for 13% (17 out of 129) and 4.6% (6 out of
129) of the literature, respectively.

Within the Mobile Robots category, the TurtleBot
series is notably the most frequently mentioned, 20%
(26 out of 129), contributing to a significant portion of
mobile robot-related references. The Husky and Jackal
robots from Clearpath Robotics also stand out, col-
lectively comprising 8.5% (11 out of 130) of the mo-
bile robot-related literature. The Pioneer 3-DX follows
with 3.8% (5 out of 129) representation. This indi-
cates a preference for certain models within theMobile
Robots category, unlike in the Self-driving Cars and
Wheelchairs categories, where a diverse range of robot
models is utilised, including custom-built options.

It is also critical to note that approximately 24% (31
out of 129) of the reviewed papers were nonspecific
about the robot type utilised, referencing general cate-
gories such as UGV (Unmanned Ground Vehicle), au-
tonomous car, or robotic wheelchair without providing
detailed information on the exact model or brand. This
highlights a trend in the literature where the focus is
more on the application or technology rather than on
specific hardware details.

D. SIMULATORS UTILISED FOR WMRS
In this section, a review is presented of simulators
that are used for AI-based perception and control of
WMRs. The results of the review are summarised in
Table 6. For clarity, in this table, we have only included
the literature that explicitly mentions the simulator
employed.

From the reviewed papers, Gazebo stands out as the
most commonly used standalone simulator, accounting
for 80% (101 out of 136)of the references. It is fre-
quently paired with RViz for visualisation, highlight-
ing the effectiveness of this combination for robotic
algorithm development and testing. The usefulness of
pairing Gazebo with other platforms such as NVIDIA
Isaac Sim [109] is also reported in the papers.

Another emerging trend is the use of the Unity game
engine as a 3D simulator, likely driven by its recent
official support for ROS and its AI capabilities [198].
Unreal Engine is another game engine that is gaining
traction in the field of robotics simulation, especially
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TABLE 5. Types of WMRs Employed in Research

Category Examples

Mobile Robots

PeopleBot [42], [91]
Pioneer 3-DX [19], [36], [42], [72], [119]
Clearpath Robotics Husky [28], [75], [85], [116], [174], [175], [178]
Clearpath Robotics Jackal [18], [28], [53], [94]
Willow Garage TurtleBot series [2], [8], [9], [12], [25], [30], [35], [70], [81], [88], [100], [105], [143], [144], [147],
[148], [150], [158], [178]–[185]
Willow Garage PR2 [87], [124]
Roomba vacuum cleaner [86], [172]
Eddie [186]
Rob@work 3 [187]
KUKA YouBot [138], [142]
Arlobot [134]
PlatypOUs [137]
Ceres (Volksbot platform) [188]
TiaGo [178]
Justina [176]
MR500 from Robot++ [121]
Dabo (Segway RMP200 platform) [161]
Robotnik Guardian [132]
RoboSally [189]
Aether [103]
ARGONAUTS [112]
NASA Curiosity rover [123]
S1R [76]
Neobotix MPO-700 [125]
JNPF-4WD [27]
EspeleoRobo (SpeleoRobot) [126]
Kian-I [82]
Aether [31]
Duckietown DB18 [190]
Servosila “Engineer” [120]
EKLAVYA 7.0 [127]
Polaris Ranger ATV [84]
Erle-Rover [35]
Custom robots (GripperBot, CamBot, Armbot) [29]
Customised Yamaha Grizzly 700 ATV [69]
Custom Tekniker robot (Segway + KUKA iiwa) [26]
Unspecified UGV [13], [14], [16], [20], [22], [23], [34], [71], [74], [77]–[80], [83], [89], [95], [109], [111], [113],
[117], [122], [130], [131], [140], [152], [161], [162], [191]–[193]

Self-driving Cars

iCab [151]
MSU EvoRally [194]
CaRINA [156]
F1TENTH [51]
Mahindra e2o electric car [65]
Berkeley Autonomous Race Car (BARC) [195]
AutoRally (1:5-scale autonomous vehicle) [33]
Unspecified race car [64], [173]
Unspecified car [21], [37], [52], [60], [63], [68], [153], [196]

Wheelchairs

P3AT robot [97]
ATEKS [197]
Electric/Smart wheelchair (EWC/SWC) [96]
Unspecified robotic wheelchair [24], [98], [166]

for its realistic visualisations. Notably, it forms the
basis for ROS-compatible simulation platforms like
Microsoft’s AirSim and the CARLA platform, which
stands out as the most prominent platform specialised
in autonomous vehicles from the literature reviewed.

CoppeliaSim (formerly V-REP) was the second
most popular specialised robotic simulator in the lit-
erature, accounting for 5.8% (8 out of 136) of the
references, which shows that it remains a valuable
tool for some specific studies but is far less prevalent
than Grazebo. Furthermore, the occasional use of other
robotic simulators, such as Webots and Bullet, high-
lights the diverse array of tools available to researchers.

It is important to underscore that many researchers

integrate these simulators with additional software
tools, such as the RViz visualiser or MATLAB, to
further enhance their simulation capabilities, reflecting
the available adaptability for addressing the specific
needs of individual studies.

E. HIL AND HITL TESTING FOR WMRS

The study of HIL and HITL in the context of WMRs is
an emerging and dynamic field. The current literature
offers some insights but also leaves room for explo-
ration. In the case of HIL, a limited number of pub-
lications have experimented with AI-enhanced ROS-
enabled WMRs [51], [52], [65], [113]. These studies
are primarily focused on critical applications, such as
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TABLE 6. ROS-Enabled Simulators for WMR

Simulator Type Reference Numbers
Gazebo Simulators
Gazebo only [13], [15], [18], [22], [28], [30], [33], [35], [36], [53], [78], [84]–[88], [90], [92]–

[96], [98], [102], [104]–[107], [111], [112], [115], [116], [123], [125], [131],
[137], [140], [143], [144], [147], [150], [151], [155], [156], [158], [159], [162],
[166], [178], [181], [188], [192], [193], [195], [197], [199]–[202]

Gazebo + RViz [1], [10], [16], [23], [58], [65], [83], [120], [127], [135], [138], [157], [174],
[175], [181], [186], [203]

Gazebo + RViz + MoveIt [135], [204]
Gazebo + MATLAB [11]
Gazebo + Stage [2], [19], [91], [122], [165]
Gazebo + USARSim [97]
Gazebo + NVIDIA Isaac Sim [109]
Gazebo + React.js [100]
Gazebo + Pedsim [99]
Gazebo + MAVS [191]
Gazebo + AIMSUN-ROS co-simulation platform [205]
Gazebo + NoStop [113]
Gazebo + Unity [29]
Unity Simulators
Unity only [31], [68], [89], [94], [103], [124], [206], [207]
Unity + MATLAB [208]
Unity + Vuforia + MATLAB [51]
Unity + MoveIt! [26]
Unity + SEAN [34]
3DCoAutoSim (Unity + SUMO) [67]
Other Simulators/Software
AirSim (Unreal Engine) [79]
CoppeliaSim (formerly V-REP) [20], [69], [117], [126], [142], [172], [209], [210]
PathBench (Panda 3D + ROS) [17]
Webots [76], [136]
CARLA (Unreal Engine) [3], [21], [52], [60], [62], [196]
CARLA (Unreal Engine) + Autoware [63]
OPIL (Open Platform for Innovations in Logistics) [173]
Choreonoid (ROS–TMS) [101]
Bullet [74]
Duckietown Gym [32]
RViz only [81], [176], [189]
RViz + MATLAB [139]
RViz + Software-in-loop (SIL) [64]
MATLAB + Simulink [27]
WiseMove and WiseSim [37]
Stage (2D) [72]

autonomous driving [51], [52], [65], and asymmetric
threat protection [113]. This limited focus raises ques-
tions concerning the scalability and diversity of HIL
testing, prompting the need for further exploration and
experimentation across various domains and applica-
tions.

On the other hand, HITL has found a somewhat
broader application, although it still presents limited
engagement [24], [28], [29], [34], [53], [89], [98],
[102], [103], [112], [119], [124], [176]. Most of these
studies interpret HITL as a human control mechanism
rather than a human-mediated testing method [28],
[89], [98], [102], [112], [119], [176]. Other HITL
applications are concerned with human collaboration
with robots [29], [124] and social interactions [103].
Only a few pioneering works are leveraging HITL in
the robot development process, such as [24], where a
robot system learns from user demonstrations and [34]
where human feedback trains autonomous methods for
unsafe action prediction. Another notable mention is
[53], emphasising how human interaction can lead to

rapid robot adaptation, eventually eliminating the need
for human intervention.

IV. DISCUSSION
In this section, we will answer the research questions
as initially posed, based on the information extracted
through our literature review.

A. RQ1: WHAT ARE THE APPLICATION AREAS
FACILITATED BY AI-DRIVEN METHODOLOGIES IN
THE DOMAIN OF WMRS?
Table 3 showcases the diverse application areas of
AI-based WMRs. The predominance of “Research”
applications is indicative of the critical role that aca-
demic inquiry plays in technological progression. For
instance, research on digital twin models in Cyber-
Physical Manufacturing Systems (CPMS) [73], [74]
presents opportunities for real-time monitoring and
control, laying the groundwork for its applications in
sectors like manufacturing and logistics. Similarly, the
academic focus on learning from observation [25] has
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specific implications for fields that require a high level
of adaptability and operational scope. For instance, in
a factory setting, robots enabled with learning-from-
observation capabilities can watch skilled human oper-
ators or other robots to learn new tasks without the need
for extensive reprogramming. This not only reduces the
time needed for robot training but also enables more
flexible robotic systems that can adapt to new tasks on
the fly. Furthermore, studies focusing on multi-robot
localization and mapping [23], [77], [78] are essential
in addressing the challenges related to navigation and
obstacle avoidance inmulti-agent environments, which
have broader implications in fields such as disaster re-
sponse and agriculture. Importantly, academic research
often acts as a testing ground for novel algorithms and
techniques. Research outcomes not only validate these
methods but also reveal limitations and suggest areas
for future investigation. For instance, autonomous ex-
ploration in indoor environments [30], [86]–[88] may
expose challenges related to sensory data processing
or energy efficiency, thereby directing subsequent re-
search or application-focused initiatives.
The strong representation of the "Automotive" and

"Healthcare" sectors in the applications of AI-driven
WMRs underlines the intersection between technol-
ogy and societal needs. In the automotive realm, the
push towards autonomous driving and complex path
planning [2], [58], [60], [62], [65] epitomises the
evolution of mobility, redefining our transportation
paradigms. Meanwhile, the healthcare sector’s diver-
sification into autonomous wheelchairs, automation
inside long-term care facilities, and medication de-
livery [24], [31], [96]–[98], [103], [105] underscores
a compassionate application of technology aimed at
enhancing human lives. The versatility of WMRs in
sectors like "Warehouse and Logistics," "Agriculture,"
and "Rescue and Disaster Response" showcases the
adaptability of AI methodologies. The application of
AI in navigation, harvesting, and disaster management
[106], [107], [115], [118]–[120] illuminates a tech-
nological response to complex real-world challenges.
Additionally, the emergence of WMRs in unconven-
tional sectors like "Entertainment" and "Household"
[129], [131] offers a glimpse into the future where the
boundary between conventional industrial applications
and everyday life becomes increasingly blurred.

B. RQ2: WHAT ARE THE PRIMARY PERCEPTION
AND CONTROL OBJECTIVES OF WMRS, AND HOW
DOES AI CONTRIBUTE TO THEIR ACHIEVEMENT?
The extensive categorisation of AI techniques depicted
in Table 4 underscores themultifaceted role of artificial
intelligence in shaping modern robotics, particularly
in the fields of perception and safety, path planning
and control mechanisms. Within the Perception and
Safety category, the integration of SLAM algorithms
and object detection techniques like YOLO reflects a
trend toward real-time processing and adaptability, em-

phasising the growing demand for responsive and au-
tonomous systems [62], [87], [88], [103], [105]. Mean-
while, the use of algorithms such as RRT, DDPG, and
DQL in Path Planning [2], [15], [153] highlights the
push towards exploration in unknown or dynamic envi-
ronments, fostering flexibility and versatility. In terms
of Control Mechanisms, the application of LSTM,
TD3, and Kalman filters [26], [86], [102] demonstrates
a broader shift toward collaborative and adaptive con-
trol, reflecting the increasing complexity of tasks that
robots are expected to undertake.

However, these advancements also present complex-
ities beyond technical proficiency. One key issue is that
of interoperability, as there remains a lack of standard
protocols that enable seamless integration between dif-
ferent AI systems and robotic platforms. This raises
questions about the potential inefficiencies and risks
associated with a fragmented landscape of proprietary
systems. Another critical factor is the standardisation
of AI methodologies in WMRs [211]. While the de-
velopment of uniform frameworks could streamline
the integration and facilitate broader applications, it
could also stifle innovation by creating barriers for
emerging, non-standardised solutions. Lastly, there is
an ethical dimension that cannot be overlooked, espe-
cially when dealing with highly autonomous systems.
The deployment of WMRs in fields such as health-
care and public service raises critical questions about
safety, privacy, and decision-making. For example, the
level of machine autonomy in medical settings must
be carefully balanced against patient safety, requir-
ing stringent ethical guidelines [212]. Future research
might, therefore, explore these challenges more rig-
orously, potentially by creating uniform frameworks
or investigating the socio-ethical implications of de-
ploying highly autonomous robotic systems in various
domains.

By synthesising these findings, it becomes clear that
AI’s contributions to robotics are both transformative
and multi-dimensional, setting a path for continual
innovation while also opening avenues for critical ex-
amination and enquiry.

C. RQ3: WHICH ROS-ENABLED WMRS ARE
EMPLOYED IN AI-DRIVEN PERCEPTION AND
CONTROL RESEARCH?
The categorisation of WMRs into "Mobile Robots",
"Self-driving Cars", and "Wheelchairs", as detailed
in Table 5, presents several insights into the current
state and direction of AI-driven perception and con-
trol research. The significance of the “Mobile Robot”
category, particularly the TurtleBot series [2], [8], [9],
[12], [25], [30], [81], [88], [100], [105], [143], [144],
[147], [148], [150], [158], [178]–[181], indicates a
strong focus on exploration and automation in un-
structured environments. This trend may reflect the
broader scientific interest in space exploration, disaster
recovery, and autonomous navigation. On the other
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hand, the diversity within the "Self-driving Cars" and
"Wheelchairs" categories suggests a more application-
specific research focus. Innovations in self-driving cars
[156], [194] may be driven by the automotive in-
dustry’s push towards autonomy, while advancements
in robotic wheelchairs [97], [197] likely reflect the
growing need for assistive technologies in healthcare
and ageing populations. The role of assistive robotics
in healthcare, exemplified by platforms like Assistive
Gym [213], demonstrates the adaptability and preci-
sion required for these applications, necessitating a
deep understanding of both robotic taxonomy and the
specific requirements of healthcare scenarios [214].
The disparate emphasis between categories illustrates
the multi-dimensional nature ofWMRs research, high-
lighting both the convergence on widely accepted plat-
forms and the constant exploration of new terrains and
functionalities. This difference gives insight into the
challenges of harmonising standards with innovation
in a rapidly evolving field.

D. RQ4: WHAT ROS-COMPATIBLE SIMULATION
PLATFORMS ARE AVAILABLE FOR WMRS?
Our systematic review on ROS-enabled simulators for
WMRs offers clear trends regarding simulation plat-
form preferences and utilisation within the community.
According to current academic literature, Gazebo has
become the primary simulator, accounting for 70.5%
of references in Table 6. This dominance can be at-
tributed to its open-source nature, continuous com-
munity support, and modularity, as evidenced by its
frequent pairingwith RViz. AlthoughGazebo currently
dominates, the data shows a noticeable increase in the
use of game engines such as Unity [31], [68], [89],
[94], [103], [124], [206] and Unreal Engine [3], [21],
[52], [60], [62], [63], [79], [196]. The reason for the
popularity of these engines is that they are capable
of producing high-quality, real-time graphics render-
ing and contain easy-to-use machine learning tools.
Unreal Engine serves as the foundation for leading
autonomous vehicle simulators CARLA and AirSim,
while Unity’s latest official ROS support is likely to
speed up its adoption even more.
A notable observation is the discrepancy between

the list of available simulators in Table 1 and those
frequently cited in Table 6. Many capable platforms,
such as Webots and MuJoCo, are utilised less for
WMRs compared to Gazebo. This disparity under-
scores the importance of factors beyondmere availabil-
ity in determining simulator selection, such as physics
engine and model format support, ease of use, integra-
tive capabilities and community support [215]. As the
robotics community progresses, their preferred tools
will also advance. The steady rise of game engines, ow-
ing to their unmatched visualisation and emerging ROS
support, suggests a potentially transformative shift in
the near future. Future researchmight delve deeper into
the factors influencing these choices to provide clearer

guidance for both current researchers and newcomers
to the field.

E. RQ5: HOW SIGNIFICANT ARE HIL AND HITL
TESTING METHODOLOGIES IN THE DESIGN
PROCESS OF WMRS?
The utilization of HIL andHITL testingmethodologies
in the design process of WMRs appears promising
but is notably limited in current practice. Although
HIL offers valuable advantages such as early problem
detection and cost reduction, its application has been
confined to a narrow range of critical domains, such
as autonomous driving and threat protection [51], [52],
[65], [113]. Similarly, while HITL could allow rapid
adaptation, effective robot training and performance
enhancement [24], [34], [53], the literature mainly in-
terprets it as a human control mechanism rather than
a testing method [28], [89], [98], [102], [112], [119],
[176]. This scarcity of diverse applications in the re-
viewed literature may signal a discrepancy between
the theoretical significance of HIL and HITL and their
practical adoption. It raises important questions about
the challenges, perceptions, or misconceptions that
may be hindering wider experimentation and integra-
tion of these methodologies. Thus, while the benefits
of HIL and HITL are evident, their actual impact on
the design process ofWMRs appears constrained, war-
ranting further investigation and critical reflection on
the underlying barriers to their more popular use.

V. CONCLUSION
In this comprehensive systematic literature review,
we explored ROS-enabled simulators used for AI-
enhanced WMRs. To ensure a robust methodology,
our research was conducted by following the PICOC
framework and employing the PRISMA diagram to
categorise and analyse the selected papers. The in-
vestigation was guided by five research questions and
addressed the following points:
1) WMRApplications: The various applications of

WMRs across industries were examined, identi-
fying the state-of-the-art advancements reported
in 186 relevant papers. The growing interest in
this subject area is evident from the significant
increase in the number of papers published in
recent years, as shown in our analysis.

2) Perception and Control Tasks: The main per-
ception and control tasks for ROS-enabledWMRs
are summarised. We explored the various AI ap-
proaches employed to accomplish these tasks,
providing a detailed view of the methodologies
and techniques used. This specification offers a
clear understanding of the current landscape and
serves as a foundational reference for future inno-
vations and developments in the field.

3) WidelyUsedRobots:Widely usedWMRmodels
were identified in this study, providing a valuable
reference for researchers and practitioners.
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4) ROS-enabled Simulation Platforms: Our find-
ings provide insight into ROS-enabled simula-
tion platforms commonly used for designing AI-
enhancedWMRs. Notably, we observedGazebo’s
dominance as a simulator and the emergence of
the Unity and Unreal Engine game engines for the
purpose of robotic simulation.

5) Significance of HIL and HITL testing:Our sur-
vey of HIL and HITL testing methodologies high-
lighted their underutilisation but high potential in
the design process of WMRs.

The distinct contribution of this review lies in its
concentrated exploration of ROS-enabled simulators
specific to AI-enhanced WMRs, a subject that has
not been comprehensively addressed in the existing
literature. This specialised emphasis offers fresh in-
sights into the field, enhancing comprehension of the
interplay between ROS-enabled environments and so-
phisticated AI techniques in WMRs, and consequently
enriching the discourse with insights into how these
technologies synergise to advance robotic capabilities.
Our meticulous approach in dissecting and categoris-
ing the current state of research in this domain not only
fills a critical gap in the academic literature but also
paves the way for future explorations.

Future work
Based on the comprehensive insights gained from

our review, we propose the following directions for fu-
ture research in the domain of ROS-enabled simulators
and AI-enhanced WMRs:

• Advancing High-Fidelity Simulations: Investi-
gate the potential of advanced simulation plat-
forms like Unity and Unreal Engine for their
high-fidelity graphics capabilities. Future studies
should explore how these platforms can enhance
tasks requiring detailed visual data and assess
their applicability in more complex simulation
scenarios.

• Enhancing Human-Robot Interaction: Investi-
gate the development of simulators that can ef-
fectively mimic human-robot interactions across
various contexts, such as healthcare and public
service. Emphasis should be on simulating diverse
human behaviors and environments to enhance
the adaptability and safety of WMRs in scenarios
such as patient care, customer service and per-
sonal assistance.

• Ethical Considerations in Autonomous Sys-
tem Deployment: Address the ethical challenges
associated with deploying highly autonomous
WMRs, particularly in sensitive sectors like au-
tomotive, military and healthcare. Future stud-
ies should aim to develop ethical guidelines and
safety protocols that balance the benefits of auton-
omywith the need for human oversight and safety.

• Exploring Novel AI Techniques for WMRs:
Investigate emerging AI methodologies and their

application in enhancing the perception and con-
trol capabilities ofWMRs. Future research should
delve into the potential of cutting-edge AI tech-
niques to solve existing challenges and open up
new possibilities in robotic navigation and task
execution.

• Standardisation and Interoperability in AI-
driven WMRs: Examine the need for standard
protocols and frameworks to facilitate seamless
integration between different AI systems and
robotic platforms. Future research should focus
on developing universal standards that can ac-
commodate a diverse range of AI methodologies
and robotic models, enhancing the interoperabil-
ity within the field.

• Advancing Collaborative Multi-Robot Sys-
tems: Explore the development and coordination
of multi-agent WMR systems for scenarios re-
quiring teamwork, such as search and rescue or
industrial tasks. Focus on enhancing communica-
tion, coordination, and collaborative task execu-
tion, integrating advanced AI to facilitate adaptive
decision-making in these collaborative environ-
ments.

• Enhancing WMR Adaptability in Unstruc-
tured Environments: Investigate the develop-
ment of WMRs for operation in unconventional
and challenging environments, such as disaster
zones and extraterrestrial missions. Emphasise
improving robustness and adaptability to diverse
conditions, including extreme weather and varied
terrain, by integrating advanced sensory systems
like LiDAR, SONAR, and thermal imaging. Fo-
cus on enhancing the reliability of AI systems in
these dynamic settings to ensure effective opera-
tion and decision-making.

• Expanding the Use of HIL and HITL in
Robotics: Explore the broader application of HIL
and HITL methodologies in the development and
testing of robotic systems. Future research should
aim to understand how these approaches can im-
prove the performance and efficiency of WMRs,
particularly in complex control and environmen-
tal interaction scenarios.

This study’s thorough examination of ROS-enabled
simulators in AI-enhanced WMRs has far-reaching
implications for the future of robotic research and
application. By providing a thorough examination of
current practices and emerging trends, our review lays
the groundwork for significant advancements in the
field. The insights garnered from this research could
catalyse the development of more sophisticated control
algorithms and perception models, thereby enhancing
the autonomy and efficiency of WMRs. Additionally,
the identification of gaps and underexplored areas
presents opportunities for innovative research, poten-
tially leading to breakthroughs in how WMRs interact
with and navigate their environments. Furthermore,
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this research could inspire the development of more
comprehensive, standardised, and interoperable ROS-
based platforms. As the integration of ROS and AI
continues to evolve, we anticipate a notable shift in
the capabilities of robotic systems, opening new pos-
sibilities for their application in complex, real-world
scenarios. This could result in transformative changes
not only in robotic technology but also in how these
systems are implemented across various sectors, from
automotive to healthcare, logistics and beyond.
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