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Chapter 4
Intelligent Architectures for Extreme 
Event Visualisation

Yang Song, Maurice Pagnucco, Frank Wu, Ali Asadipour, 
and Michael J. Ostwald

Abstract Realistic immersive visualisation can provide a valuable method for 
studying extreme events and enhancing our understanding of their complexity, 
underlying dynamics and human impacts. However, existing approaches are often 
limited by their lack of scalability and incapacity to adapt to diverse scenarios. In 
this chapter, we present a review of existing methodologies in intelligent visualisa-
tion of extreme events, focusing on physical modelling, learning-based simulation 
and graphic visualisation. We then suggest that various methodologies based on 
deep learning and, particularly, generative artificial intelligence (AI) can be incor-
porated into this domain to produce more effective outcomes. Using generative AI, 
extreme events can be simulated, combining past data with support for users to 
manipulate a range of environmental factors. This approach enables realistic simu-
lation of diverse hypothetical scenarios. In parallel, generative AI methods can be 
developed for graphic visualisation components to enhance the efficiency of the 
system. The integration of generative AI with extreme event modelling presents an 
exciting opportunity for the research community to rapidly develop a deeper under-
standing of extreme events, as well as the corresponding preparedness, response and 
management strategies.
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4.1  Introduction

Extreme events such as earthquakes, floods and wildfires have a significant impact 
on both the natural environment and human society. To effectively predict, prepare 
for and manage the impact of extreme events, researchers have developed a range of 
physics-based modelling methodologies to understand the underlying dynamics of 
such events. When these modelling methods are integrated into an immersive visual 
environment, researchers and domain experts can interact with systems and better 
understand the complex nature of extreme events and human responses. This 
increased understanding relies on three factors. The first is the physical presence 
users feel in immersive environments, and the second is how this type of presence 
heightens intuitive understanding and spatial cognition. The third factor is associ-
ated with a capacity to interact with or shape the environment. In an immersive 
visualisation, users can specify key environmental factors that would affect the 
dynamics of extreme events, and the system will then adapt the visualisation accord-
ingly to provide a highly naturalistic depiction of various scenarios. Such intelligent 
visualisation systems integrating physics- and data-driven modelling and simula-
tion will be highly effective for preparing communities, designing response strate-
gies and training first responders.

Currently, the simulation of earthquakes with supercomputers has been an active 
research field, and there is significant effort being invested by researchers in devel-
oping open-access datasets to facilitate further data-driven research (Kovner, 2022). 
There has also been significant research for fire and flood modelling using both 
physics-based and machine learning approaches (Jain et  al., 2020; Teng et  al., 
2017). However, there is relatively less research specifically focused on immersive 
visualisation for extreme events, especially for intelligent visualisation that can 
adapt dynamically to different environments in simulated scenarios.

In this chapter, we will first provide a review of representative approaches that 
build towards intelligent visualisation of extreme events. We consider that intelli-
gent visualisation is a computational pipeline that consists of (i) modelling, (ii) 
simulation and (iii) graphic visualisation. While modelling and simulation focus on 
data generation, graphic visualisation uses computer graphics algorithms to repre-
sent the generated data in a visually immersive and realistic way. Next, motivated by 
the recent success of deep learning and generative artificial intelligence (AI), we 
will present suggestions for how generative AI methodologies can be incorporated 
into the visualisation of extreme events. Finally, we will discuss how different gen-
erative AI methods can support the various components required in a visualisation 
pipeline for extreme events.
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4.2  Intelligent Visualisation of Extreme Events

While the noun “visualisation” often refers to the graphic presentation or represen-
tation of image-based data, in the present context, we focus on intelligent visualisa-
tion, which consists of a complete computational pipeline including modelling, 
simulation and graphic visualisation (Fig.  4.1). Such an intelligent visualisation 
system will be able to generate data representations of extreme events based on 
physical modelling or learning-based modelling and simulations, which are then 
visualised in high resolution with support for user interaction and immersive experi-
ences. This section discusses examples of each of the three pipeline stages.

4.2.1  Physical Modelling

The objective of using physical modelling for extreme events is to develop mathe-
matical models that replicate the underlying principles and behaviours of the 
dynamic evolution of these events. For instance, through physical modelling, stud-
ies have investigated the effect of wind, slope, fuel moisture, fuel structure and igni-
tion setting on the rate of spread and intensity of bushfires (Sharples & Hilton, 2020).

Fire modelling approaches have evolved from initial one-dimensional (1D) rate 
of spread (RoS) estimations to the more intricate 2D or 3D simulations that depict 
the expansion of fire perimeters in spatial contexts. Physical fire models follow the 
same fundamental principles of physics but differ in choosing the governing equa-
tions and implementations. They also vary in complexity and dimensionality. For 
example, the classical approach for fire spread modelling (Weber, 1991) was ini-
tially a 1D model to predict RoS based on the flux of energy and later extended to a 
2D plane. A model called WFDS was later developed for 3D simulations to resolve 
different physical process stages (Mell et al., 2007).

Machine Learning Model
Data-driven approach. Require 
high-quality training data, which are 
currently not widely available.

Graphic Visualisation
2D: Overlay data on 2D maps
3D: Comprehensive representation of behaviors
Immersive: Full-body immersion, user interactions

Physical Model
Mathematics focused on 
understanding underlying 
processes. Heavily relying 
on exper  knowledge.t

Fig. 4.1 Overview of intelligent visualisation
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Some physical models have been integrated into software packages for various 
application domains. For instance, WRF-SFIRE (Mandel et al., 2014) provides a 
coupled meteorological and fire spread model. This integrated system accounts for 
dynamic interactions between weather conditions and fire behaviour by solving 
intricate physical and chemical processes within a high-resolution 3D grid-like 
domain. With its capability for advanced solution modelling, WRF-SFIRE has been 
widely used by researchers in fire dynamics. FlamMap (Finney, 2006) “is a fire anal-
ysis desktop application that [...] [includes a suite of functions that can simulate] 
potential fire behaviour characteristics, [such as] fire growth and spread, and condi-
tional burn probabilities under constant environmental conditions” (Finney, 2023). It 
also encapsulates FARSITE (Finney, 2004), which computes wildfire growth and 
behaviour for longer time periods under heterogeneous conditions.

In practice, physical models are primarily adopted in behaviour analysis of fire 
and flood events rather than operational use, mainly due to the challenges associated 
with validation and computational demands. Moreover, employing physical models 
necessitates meticulous manual input that requires domain expertise. This input 
encompasses aspects such as defining initial geometry and domain parameters, 
specifying fire source characteristics and configuring simulation parameters, among 
others. These inputs cannot be accurately determined without a rigorous and deep 
understanding of the underlying physics involved. Consequently, physical models 
tend to present a steep learning curve for researchers who do not have a background 
in these disciplines.

4.2.2  Learning-Based Modelling and Simulation

Because the principles of physical modelling are founded in expert knowledge, its 
capability for modelling complex or new scenarios is also inherently limited by 
experts’ existing knowledge. To overcome this situation, recent approaches have 
explored the use of learning-based methodologies to reveal previously hidden pat-
terns in historical or experimental data for fire and flood behaviour analysis. A 
diverse range of methods is available for this purpose, including both statistical 
machine learning and neural network-based models, and the choice of methods 
typically depends on the available scalability of data. For instance, there has been 
extensive research on flooding due to intensification of heavy rainfall under climate 
change conditions (Ho et al., 2023). These approaches typically utilise statistical 
machine learning models such as linear regression to discover correlations between 
events and environmental factors. To develop the machine learning models, a set of 
data would be collected from historical events, and various data-driven computa-
tions are applied to it, before it is fit for use in machine learning models. Similar 
approaches have also been developed using experimental data to address the limita-
tions of historical data. For example, data samples from outdoor experimental fires 
and natural, more intense wildfires can be obtained using logistic and non-linear 
regression models for the rate of fire spread (Cruz et  al., 2021). Such models 
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demonstrate an ability to represent a broad range of wildfire behaviour adaptions to 
the effects of wind speed, fuel structure and various landscape conditions.

Other types of statistical machine learning models have also been incorporated 
into extreme event modelling and simulation. In an example of the application of 
RoS estimation, a Bayesian model was developed based on weather variables so 
that the model can effectively accommodate the variability in model inputs and 
uncertainty associated with RoS prediction (Storey et al., 2021). Bayesian models 
have also been adapted in flood modelling to estimate the frequency of extreme 
flood events based on historical records (Parkes & Demeritt, 2016).

With the recent development of neural networks and, particularly, deep learning, 
some approaches have been developed to perform modelling or simulation based on 
higher-dimensional data, such as satellite images, for fire spread modelling or simu-
lation. For example, the FireCast method (Radke et al., 2019) is a simple convolu-
tional neural network model developed based on satellite images and weather data. 
To address the issue of limited training data, weather interpolation and data augmen-
tation techniques are employed. A similar approach was developed (Yang et  al., 
2021), incorporating “ground truth labels” obtained from public datasets. In another 
recent study, various data sources, “including topography, weather [conditions], […], 
vegetation, and population density” (Huot et al., 2022) as well as satellite images, are 
combined to create a comprehensive dataset for predicting next-day wildfire spread. 
Huot et al. then formulate the prediction “as an image segmentation [task to] classify 
each area as either containing fire [or not], given the location [of] the fire of the previ-
ous day”. A convolutional autoencoder is developed for the segmentation and dem-
onstrates higher performance than other machine learning approaches based on 
logistic regression and random forest algorithms. In another approach, Hodges et al. 
(2019) consider the challenge of collecting sufficient amounts of training data to sup-
port a robust machine learning process. In response, they generate synthetic data 
using Rothermel (Scott & Burgan, 2005) for homogeneous landscapes and FARSITE 
for heterogeneous spreads. A deep convolutional inverse graphics network is then 
developed using the synthetic data to predict fire spread.

While learning-based approaches like these can overcome the problem of limited 
domain knowledge and represent a more diverse data distribution, the capabilities of 
existing approaches are still limited. Current applications of learning-based 
approaches are mainly focused on predicting the frequency of fire or flood events 
and are typically formulated as regression, classification or segmentation problems. 
However, such methods are not designed for generating realistic simulations of the 
dynamic behaviours of extreme events in hypothetical scenarios with diverse envi-
ronmental conditions, especially when user interaction and adaptive simulation are 
expected. Moreover, the performance of machine learning models is highly depen-
dent on large-scale, high-quality training data. While researchers have devoted sub-
stantial time to creating open-access datasets, these are still quite small scale, which 
then limits the performance and generalisability of the developed systems. We 
expect to see more developments in dataset creation and integration of learning-
based approaches with knowledge-driven physical modelling, which would effec-
tively address this issue.
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4.2.3  Graphic Visualisation

The graphic visualisation component refers to the stage where real, modelling or 
simulation data is rendered and displayed in 2D or 3D. Typically, 2D visualisation 
is conducted by overlaying data on maps or displaying it as plots, whereas 3D visu-
alisation provides a more comprehensive and realistic representation of an event’s 
behaviour that is often rendered over a 3D map. A comprehensive survey of visuali-
sation systems for wildfires has recently been published (Tirado Cortes et al., 2023). 
Here, we provide an overview of 3D methods in graphic visualisation that have been 
utilised in the domain of extreme events since 3D methods require more complex 
processing steps.

A representative system of 3D wildfire visualisation is presented by Castrillon 
et al. (2011), where FARSITE is used to generate the data to be visualised, such as 
fire perimeters, the intensity of flames and velocity of the fire front. A graphical 
interface is then built in a 3D Multiplayer Geographical Environment, integrating 
geographical layers and 3D objects over virtual terrain. The module for fire visuali-
sation is developed based on two particle systems for modelling flame and smoke, 
which are controlled by an emitter specifying the behaviours of particles. The prop-
agation of fire is also modelled by curve morphing techniques to update the perim-
eters of fires and generate animations. Various optimisation techniques are also 
implemented to adaptively reduce the mesh vertices and number of particles so that 
the visualisation can be realistic while reducing the graphic complexity. There are 
also examples of systems that introduce more user interaction functionalities to 
update the rendering and visualisation. For instance, in one system (Wahlqvist et al., 
2021), users can change the views, data inputs and timestamps, and the visualisation 
can give valuable insights into the effect of fire spread on population areas.

Overall, while advanced graphics techniques can be implemented to achieve 
highly realistic visualisation of extreme events, significant advances are needed to 
support computational modelling for specific event scenarios. There is very limited 
support for dynamically updating the rendering of different scenes. Changing of 
environments will thus require extensive effort redesigning the underlying 3D mod-
els. 3D computer graphics also require extensive computational resources. To 
enhance efficiency, current approaches often resort to approximation algorithms 
(Byari et al., 2022) that reduce the spatial resolution or realism of the visualisation. 
While recent advancements in deep learning and generative AI have demonstrated 
impressive progress in computer graphics (Lefohn, 2023), more work is needed for 
adapting such methods for visualisation of extreme events.

4.3  Generative AI in Visualisation

While generative AI has attracted considerable public attention due to the popularity 
of ChatGPT, we believe the development of generative adversarial networks (GANs) 
(Goodfellow et al., 2014) marks the start of generative AI for images. By training a 
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simple deep learning model with a generator and a discriminator, GANs can generate 
new images that resemble the original imaging domain. Many improvements to the 
original GAN structure have since been developed for various objectives, such as 
style transfer, image super-resolution and image editing, leading to diverse applica-
tions. Conversely, GANs can be difficult to train, and the generated images often lack 
diversity. Hence, other generative AI models are proposed, such as variational auto-
encoders (VAEs) (Kingma & Welling, 2019) and diffusion models (DMs) (Ho et al., 
2020), although VAEs tend to produce images with lower quality and DMs can be 
slow when generating images. More recently, deep learning models have been 
adapted into computer graphics, such as neural radiance field (NeRF) (Mildenhall 
et al., 2020) and its variants, achieving both efficient and realistic graphic rendering 
and visualisation. Nevertheless, while significant research and industry development 
have been conducted on generative AI, relatively little work has been done specifi-
cally for the visualisation of extreme events. Here, we describe some representative 
studies of generative AI models in related application domains, which are useful 
precedents for adapting generative AI for visualisation of extreme events.

4.3.1  Image Generation

A typical GAN model contains two components: a generator that creates synthe-
sised images and a discriminator that distinguishes between real and generated 
images. During the training process, the aim is to derive a generator that can create 
highly realistic images so that the discriminator cannot separate them from the real 
images. As a result, the trained GAN generator can be used to create new, high- 
quality images during the inference process. Many variants of the standard GAN 
model have been proposed, some customised for specific applications, while others 
address fundamental limitations in the GAN model, such as the difficulty of training 
and problems with mode collapse. A recent survey paper (Wang et al., 2021) pres-
ents a comprehensive overview of this field.

One example of the use of GANs in extreme event visualisation generates photo- 
realistic images showing how floods can affect the environment (Schmidt et  al., 
2022). The approach, named ClimateGAN, can generate flooded scenes with 
1-metre flood levels based on arbitrary street-level scenes such as Google Street 
View images. The model consists of two modules: a Masker module for predicting 
the image regions that should be under water and a GAN-based Painter module to 
generate water textures based on the Masker’s prediction. To train the model, paired 
images of before and after flooding would be needed, which are, however, rare and 
cannot be easily collected. Therefore, in ClimateGAN, a virtual world is created 
using the Unity3D engine to simulate urban, suburban and rural environments, 
which are then flooded with 1m of water to generate the paired training data. A 
smaller dataset of real images was also collected to enhance the training of the 
model. While ClimateGAN generates realistic images, it is difficult to extend it to 
floods of different heights, mainly due to the difficulty of data collection.

4 Intelligent Architectures for Extreme Event Visualisation
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In contrast to GANs, DMs are inspired by non-equilibrium thermodynamics. A 
DM consists of two “processes, the forward diffusion process [which] defines a 
[Markov] chain of diffusion steps to slowly add random noise to data, [and] the 
reverse diffusion process” (Niu et al., 2023), which learns to reverse the forward 
process to construct desired data outputs from the noise. While DMs are typically 
much slower than GANs during the generation process, various techniques have 
been developed to enhance their efficiency. DMs have thus gained significant inter-
est in the research community and industry, creating popular tools such as DALLE 
2, because of their exceptional capabilities in creating high-quality, realistic and 
diverse images.

DMs have also been used for weather forecasting. For example, a recent approach 
(Chen et al., 2023), named SwinRDM, performs weather forecasting via a varia-
tional recurrent neural network and then interpolates the forecasting output via a 
diffusion-based super-resolution module. As a result, SwinRDM can provide global 
weather forecasting at 0.25-degree resolution without incurring an excessively high 
computational cost.

Based on these precedents, similar models can be developed for the visualisation 
of extreme events, such as using GANs or DMs to generate scenes showing wildfire 
spread or changes in landscapes after an extreme event episode. Similar to 
ClimateGAN, the difficulty would lie in data collection, as generative AI models 
require large-scale training data. Images of certain view angles would be easier, 
such as aerial images from satellite imagery. In other cases, a simulated environ-
ment might be the best approach to generate a sufficient amount of training data. 
Moreover, for extreme events, the realism of generated images is critical, and they 
need to adjust to different environmental conditions. To achieve this, it is possible to 
integrate text prompts in the image generation process via DMs or image templates 
as conditional input for GANs. Such information can be used to explicitly guide the 
image generation process so that the outputs can better approximate the expected 
scenarios following certain environmental variables.

4.3.2  Dynamic Simulation

The dynamic evolution of an extreme event, reflected in the rapid motion (direction 
and velocity) of the fire or flood, is an important aspect that cannot simply be repre-
sented by a sequence of images. For example, while the spread of a wildfire recorded 
in satellite imagery might be viewed once every few hours, a 3D visualisation of fire 
events in the first-person immersive view would require real-time dynamic update, 
and the information about evolution and motion also conveys causal effects accord-
ing to the environmental conditions. While generative AI models have demonstrated 
impressive performance for single images, relatively fewer research studies have 
been conducted on generating dynamic time-lapse data or videos, often due to the 
significant requirement for computational power.
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In a recent study (Chu et al., 2021), a GAN-based deep learning model is devel-
oped for fluid simulation, where the fluid can morph dynamically depending on 
several “control modalities, including obstacles, physical parameters, kinetic energy 
and vorticity” (ibid.). Interestingly, the model “explicitly embeds physical quanti-
ties into the learned latent space” (ibid.) so that the control parameters can effec-
tively impact the generation of output and enhance their diversity. To train the 
model, a training dataset is created via simulation to generate pairs of images repre-
senting the density and velocity information. The dataset also introduces samples 
showing different velocities of moving obstacles so that the model training can be 
exposed to a variety of cases. The evaluation results show that the approach delivers 
higher performance than the other more standard GAN- or VAE-based models. 
However, as with all generative AI methods and especially GAN models, the simu-
lation outputs do not always adapt well to user controls.

For dynamic or video generation, unlike the above-mentioned approach that 
involves explicit physical modelling, most methods choose to incorporate motion 
information via more traditional computer vision algorithms, such as optical flow. 
For instance, with DTVNet (Zhang et al., 2020), the generation framework takes in 
a single landscape image and then generates diversified time-lapse videos based on 
normalised motion vectors. The network contains two modules: an optical flow 
encoder that estimates the optical flow between consecutive images and a dynamic 
video generator that follows a GAN-based architecture and constructs the video 
frames by learning motion and content information. DTVNet experiments were per-
formed on a dataset “containing dynamic sky scenes, [including a] cloudy sky with 
moving clouds and […] a starry sky with moving stars” (Xiong et  al., 2018). 
Evaluation of DTVNet in human user studies shows improved performance over 
other GAN models.

DMs have also been applied to dynamic scene or video generation, which typi-
cally shows more impressive results than GAN-based models but requires text 
prompts. For example, Imagen Video (Ho et al., 2022) is a text-conditional video 
generation system. Compared to other approaches, Imagen Video achieves high- 
definition video generation producing videos of 128 frames of 1280 × 768 pixels at 
24 frames per second. It achieves this with a cascade of DMs containing a sequence 
of spatial and temporal super-resolution processes. While the method achieves 
remarkable performance, it was trained on an “internal dataset [containing] 14 mil-
lion video–text pairs and 60 million image–text pairs” (Ho et al., 2022) as well as 
other large-scale public datasets. While this requirement can be prohibitive, for 
developing a domain-specific model, such as for simulating wildfires, a much 
smaller dataset should be feasible to achieve promising results.

Currently, DMs have demonstrated impressive performance for video genera-
tion, which can be a possible approach for generating dynamic simulation of 
extreme events. Customisations of the models would be required so that environ-
mental variables can be effectively integrated in place of the text prompts. GANs, 
on the other hand, can be more flexible in terms of introducing environmental vari-
ables into the model. However, domain-specific customisation will also be required 
especially to encourage the diversity of data generation. Overall, in a manner 
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similar to generative AI for image generation, a key design consideration would be 
the dataset. Large-scale datasets that can closely represent real data distribution and 
diversity would be valuable for developing such models. To accommodate the limi-
tations of datasets, other techniques would need to be exploited, such as introducing 
explicit physical modelling, performing advanced data augmentation or integrating 
pretrained models with transfer learning.

4.4  Conclusion

Extreme climate events such as floods and wildfires pose a particular challenge to 
society. To better prepare the community and first responders for such unpredictable 
events, new methods are required. Intelligent visualisation facilitates (i) picturing 
diverse scenarios, (ii) developing rich and dynamic narratives from them, (iii) com-
municating the threats they entail and (iv) supporting people to rehearse their 
responses to these threats. As such, intelligent visualisation is central to both gain-
ing new insights into extreme events and translating this knowledge to stakeholders.

Moreover, human perception of the environment and its ability to adapt to 
dynamic changes depend on the rapid acquisition of real-time sensory data for pro-
cessing and swift response. The remarkable capacity of the brain to efficiently allo-
cate computational resources and direct pertinent data streams to the relevant 
cortical regions for planning somatosensory reactions empowers us to manage these 
fluctuations. Nevertheless, our capacity to make well-informed decisions and 
respond appropriately to unfamiliar situations (dealing with uncertainty) remains 
significantly underexplored. Acknowledging that immersion is a multifaceted expe-
rience intricately influenced by various sensory modalities, this chapter places its 
primary emphasis on the saliency of visual information as a key driver of informa-
tion acquisition when extreme events occur.

In this chapter, we provided a review of current methodologies in intelligent 
visualisation, focusing on physical modelling, learning-based modelling and simu-
lation as well as graphic visualisation components. Then, considering the wide-
spread success of deep learning and particularly generative AI models, we 
hypothesised that such models can also be adapted for the visualisation of extreme 
events. We thus presented several representative generative AI approaches in related 
application domains and discussed various design considerations when developing 
such approaches for extreme event visualisation. Ultimately, this chapter can be 
viewed as both a review and position paper for the emerging topic of intelligent 
visualisation for extreme events.
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