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Abstract—The fashion industry’s negative impact and overcon-
sumption require urgent action to improve and reduce fashion
consumption. Tactile gesture plays a vital role in understanding,
selecting, and feeling attached to clothes. In this paper, we intro-
duce the FabricTouch II dataset with multimodal infromation,
which focuses on fabric assessment touch gestures and aims to
support sustainable fashion consumption. By integrating gesture
labels, we enhance the dataset’s comprehensiveness, improve
recognition accuracy, and provide valuable information for con-
sumers and intelligent systems, such as conversational agents
in shop or home wardrobe. Additionally, this study has made
preliminary explorations on recognizing fabric touch gestures
using time-spectral representations of EMG combined with graph
representations on this small batch dataset. The experiment found
that the graph representation of EMG outperforms the regular
neural network and that the representation capacity of bilateral
EMG data is superior to that of unilateral data.

Index Terms—textile touch, EMG, gesture recognition, GNN

I. INTRODUCTION

The fashion industry is one of the most polluting industries
in the world. It is responsible for a significant amount of
greenhouse gas emissions, water pollution, and textile waste
[1]. One of the main reasons for the fashion industry’s envi-
ronmental impact is overconsumption. People are buying more
clothes than ever before, wearing them for a shorter time, and
often throw clothes away after only a few wears if none [2].

To slow down and help our purchasing decision, it is critical
that people engage in understanding the quality of the clothes
material (so that it can last for longer) as well as understand
our affective connection to it (e.g., pleasure, comfort, liking)
[3]. Engaging with clothes involves tactile interactions that
often get overlooked in our fast-paced fashion culture [4].
These tactile interactions are disregarded due to impulsive
purchases driven by social pressures, minimal touching in
stores to preserve the pristine condition of new clothes, or
the abundance of clothes in our wardrobes [5]. However, At
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the same time touching is linked to more purchasing (REF
Brain studies) and hence it is important to engage consumers in
reflective tactile processes aimed to support both our decision
process during shopping as well bonding once we buy the
clothes. Simeng [6] has demonstrated the potential of con-
versational agents in facilitating individuals’ tactile, reflective,
and affective interactions with clothing materials. However, for
conversational agents to be effective, it is crucial that they pos-
sess a certain level of awareness regarding how the consumers
is touching the clothes to ensure that they trigger meaningful
reflective prompts during their conversation. When we touch a
material, tactile receptors in our skin are stimulated, and these
signals are processed in our brain [7], leading to sensorial and
affective judgments that help us classify materials and make
subjective evaluations [8]. As such, different types of touch
gestures and their kinematics are used to explore different
properties of material [9] and different gestures are used by the
expert in assessing the affective experiences that the material
can provide (PETRECA 2013) [10] [11].

In this paper, we present the FabricTouch II dataset, with
the aim to capture the fabric assessment gestures to support
the long-term development of chatbot applications or con-
versational agents/robots that encourage reflective interactions
with clothes material either while shopping in person or when
browsing one’s wardrobe. We leverage this dataset to investi-
gate the automatic detection of fabric properties being explored
by individuals and their subjective ratings based on touch
behavior. The FabricTouch II dataset expands upon the previ-
ous FabricTouch Dataset [12], capturing hand muscle activity
and arm movement data from 12 participants as they explore
various garments using wearable EMG bracelets, alongside
RGB images of each garment. This dataset is a multimodal
collection that includes 16-channel EMG data from both hu-
man hands, three-dimensional accelerometer data, gyroscope
data, magnetometer data, four-dimensional quaternion data,
three-dimensional Euler Angle data, along with fabric property

979-8-3503-2745-8/23/$31.00 ©2023 IEEE



Fig. 1. Our T 2GR2 model pipeline.

labels, fabric property rating, gesture action labels, and self-
reported pleasure levels during fabric exploration. Building
upon the previous FabricTouch Dataset, integrating predefined
gesture labels and a novel algorithm enhances the dataset’s
comprehensiveness. This addition improves recognition accu-
racy for fabric properties and ratings, reveals relationships
between gestures and identified properties, facilitates feature
extraction for gesture variation analysis, and provides valu-
able information for consumers and intelligent systems, like
chatbots, in textile interaction scenarios.

And this paper conducts a preliminary exploration with only
EMG data in the dataset and builds up a graph neural network
(GNN) model with the temporal-spectral representation of
EMG. The pipeline of our Textile Touch Gesture Recognition
with Graph Representation of EMG, namely T 2GR2, as
shown in Fig. 1. The both-hand EMG data are processed
independently using Short-Time Fourier Transform (STFT) to
obtain time-spectral representations. These representations are
fed into separate two-layer GNNs to get individual global
representations. Finally, the two global representations are
combined for subsequent classification tasks.

In this paper, we conducted a comparison between normal
neural networks (NN) and GNN models in the context of both
single-handed and double-handed data inputs. The superior
performance of our T 2GR2 model, namely GNN with TSR
features of dual-hand data, was confirmed.

II. RELATED WORKS

A. Textile handling research

To facilitate effective communication of tactile experiences
for informed product choices, various verbal descriptors have
been explored to assess and communicate fabric properties
[10] [13]. However, challenges arise when non-experts strug-
gle to articulate their tactile perception, and cultural or indi-
vidual differences in verbal expression hinder the construction
of a systematic description of fabrics [4]. To bridge this
communication gap, researchers have turned to kinematics and
gestures as a means to convey tactile information. Studies have
identified common gestures used by consumers to evaluate
garments through touch, such as rubbing or stroking the

edge of the garment [9]. Cary [14] further narrowed down
the kinematic gestures to six common types used in textile
assessment, including rubbing, pressing, stretching, lifting,
scrunching, and caressing.

These gestures not only serve as a means of tactile evalua-
tion but also enable the deduction of specific fabric properties
being assessed [14]. For example, the speed of caressing has
been found to affect the perceived level of softness [15].
This suggests the existence of a language of gestures in
textile property assessment and opens up new possibilities for
establishing a taxonomy of tactile language for textiles.

B. Automatic gesture recognition

The gesture recognition in textile interactions has the poten-
tial to capture and interpret kinematic data, allowing for the
deduction of fabric properties associated with specific gestures.
Past research has shown the existence of a language of touch
that conveys sensory information and subjective experiences
[9] [14]. However, further investigation is needed to establish
the link between tactile patterns and individuals’ experiences,
with the support of gesture recognition technology.

When it comes to gesture recognition, two main approaches
are used: vision-based recognition, which relies on analyzing
video sequences captured by cameras, and wearable-sensor-
based recognition, which utilizes devices EMG sensor [16].
Vision-based recognition faces challenges obstruction, spatial
limitations, among others [17] [18] [19]. On the other hand,
wearable-sensor-based approaches offer the potential for more
natural interaction [17]. Recent studies have explored the
application of wearable physiological sensors, particularly
EMG, in capturing muscle activity during textile-handling
activities for automatic gesture recognition and fabric property
inference [20] [15] [21]. These studies have shown the fea-
sibility of building automatic classification models to identify
gestures and infer fabric properties based on subjective ratings.
Wang’s model achieved above-chance accuracy in classifying
caressing, scratching, squeezing, and rubbing gestures [21].
Lin’s study expanded on previous work by incorporating both
arms and achieved accuracy above chance level for five fabric
properties [15]. Despite some limitations, such as difficulties



in recognizing gestures in real-world situations and sensor
noise caused by arm deformation, using EMG-based armband
sensors offers advantages in terms of user-friendliness, gesture
recognition accuracy, adaptability, and cost-effectiveness [15].

III. METHODS

The objective of the research was to develop a machine
learning algorithm for an automatic gesture recognition system
based our new touch gesture dataset. This system is accurately
categorize the gestures employed during textile evaluation,
which can help infer the property being evaluated through the
tactile interaction in the future research. This study sought to
enhance the classification outcomes by encompassing possible
gestural variations of commonly used gestures. Rather than
relying on a predetermined (acted) gesture, this methodology
facilitated a more comprehensive understanding and encom-
passed the extensive array of gestures encountered in real-
life situations for better in-the-wild recognition results. In this
study, our main emphasis lies on 5 key gesture and textile
properties that have emerged from Cary’s qualitative studies
[14]. These gesture types and properties, namely rubbing
- softness, caressing - smoothness, stretching - flexibility,
pressing - thickness, and scrunching - softness. Additionally,
we have included the gesture of lifting( - lightness), which
was highlighted in a student report [15], to further enrich
our analysis. Finally, the study also aimed to validate the
correlation between a given property and the corresponding
gesture proposed [14]. In this study, we collected a dataset and,
as a trial study, built a GNN-based model with TSR features
of EMG for tactile gesture recognition on our new dataset.

A. Participants

8 female participants were recruited, including 2 of whom
had expertise in textiles. The participants’ age range was 20 to
38, and all were right-handed. The study was approved by the
Department Ethics Committee (NUMBER IF NOT BLIND).

B. Materials

1) Wearable Sensing Devices: For the experiment, two
gForcePro+ electromyography (EMG) Armbands from OY-
Motion were utilized. Each armband features 8-channel high-
sensitivity EMG and 9-axis motion sensors, as well as Blue-
tooth BLE 4.2 connectivity and an elastic armband design.
Two armbands were used to collect raw EMG and motion
data from both arms. The armbands were worn on each arm,
with the placement on one arm being a vertical flip of the
placement on the other. A bespoke data collection app and
Android phone - Moto g9 power, running on AndroidTM 10
with a Qualcomm® SnapdragonTM 662 Mobile Processor and
Bluetooth 5.0, were used for the experiment. In our dataset,
we collected the EMG and motion data while for the trial
exploration with AI models, we only used EMG data.

2) Clothes: Six garments were selected by the researcher
for inclusion in the experiment. The selection aimed to ensure
representation of various fabric properties across different

garment types and material types, capturing the real-life vari-
ability of clothing handling gestures. The garments included
puffed jackets, synthetic sweaters, silk skirts, jeans, wool-
based sweaters, and cotton shirts.

C. Data collection protocol

The data collection was conducted in a laboratory environ-
ment using the six clothes and six gesture types (rubbing,
caressing, stretching, pressing, scrunching, and lifting) [9].
The order of the fabrics was counterbalanced to reduce order
effects. After placing the armbands on participants’ arms and
gathering a signal baseline to ensure the setup was working.
Participants were set in a simulated shop setting and aimed
to collect free exploration gestures. Participants had a 20-
second interval to explore each garment, as previous studies
have found this duration to be adequate [20] [15]. They were
then asked to rate each fabric preference separately on a Likert
scale ranging from 1 to 7. Both the EMG data and the ratings
were collected for future machine learning study applications.

In the second phase, participants were given a specific fabric
property to evaluate and asked to evaluate the property by
using specific gestures. These properties and gesture types
were based on previous study [14] [9](rubbing - softness,
caressing - smoothness, stretching - flexibility, pressing - thick-
ness, scrunching - softness, and lifting - lightness). Participants
were allowed to interpret the gesture types in their own way,
and the researchers provided various demonstration examples
if people did not understand the name of the gesture. After
exploring a given gesture and property for a particular garment,
participants rated the garment on the corresponding property
scale (e.g., from ’rough’ to ’smooth’ for the smoothness prop-
erty). They also selected and repeated their favorite gesture
with the fabric and provided a rating on a 7-item Likert scale
ranging from ’not at all’ to ’very much’.

D. Data processsing and model

Due to the intermittent Bluetooth connectivity issues dur-
ing the data collection, we retained only samples contain-
ing simultaneous wristband readings on both hands. During
experiments, the EMG data was recorded with a sampling
rate of 500 Hz and 12 bit of each frame. Given the high
sampling rate, our software system captured and stored data
every 16 frames, defining this as a basic data unit. We extracted
peak values, averages, and Root Mean Square (RMS) values
for each unit. Ultimately, we selected to use the RMS value
as the distinguishing feature for each basic data unit. RMS
is chosen as a key feature in EMG analysis because of its
ability to reliably estimate signal amplitude - a character-
istic closely associated with muscle activity, along with its
smoothness and stability over time, and its inherent non-
negativity. Furthermore, to simplify the data preprocessing, we
standardized all sample lengths to a uniform 600, guided by
the probabilistic distribution of sample size and based on the
truncation operation and zero-padding operation.

And then we also carried out a variety of preprocessing
on the EMG data, including the Butterworth bandpass filter



TABLE I
ACCURACY OF MODELS

Acc Left hand Right hand Both Hnads
NN 0.24 0.28 0.32

GNN 0.28 0.32 0.36

configured with a lower cutoff frequency of 10 Hz and an
upper boundary of 240 Hz, the moving average operation
to smoothen the data, the utilization of a full-wave rectifier
to convert all signal values to positive, and the Z-Score
Normalization for standardizing the data.

For feature extraction, we used STFT upon preprocessing. It
uses the Hanning window function, a window size of 50, and a
step of 25, a Fast Fourier Transform (FFT) size of 100. STFT
offers a dual-dimensional representation encompassing both
time and frequency domains, thus maintaining the specifics
of frequency information localized in time. It proves advanta-
geous when handling non-stationary signals (EMG et al.).

For our T 2GR2 model, EMG data of both hands are sub-
jected to the STFT to obtain temporal-spectral representation
(TSR) of each channel over time. The global information of
the left and right-hand EMG is acquired through graph-based
representation. As both the left and right-hand rings have eight
channels each, the construction of the graph structure is based
on the principle of adjacency, forming an undirected cyclic
graph. The node features of the graph are TSR features of
the entire EMG series of each channel. Finally, the global
graph representations of the left and right hands are fused to
achieve the task of touch gesture classification. The dataset
is randomly divided for training with 128 samples, validation
with 20 samples, testing with 25 samples. For our T 2GR2

model training, we used the Adam optimizer with a learning
rate of 0.005 and the dropout layer with a dropping rate 0.5.

IV. RESULTS

In addition to our T 2GR2 model, we also compared the
GNNs model with left-hand and right-hand data, respectively,
and regular NN models with left-hand data, right-hand data,
and both-hand data, respectively. As shown in Tabel I, the
GNN model performed better than the NN model in all our
tests. The reason is that the GNN model was better able
to learn the structural features between the EMG channels,
enabling a higher capacity in gesture recognition. The regular
NN model may encounter difficulties handling this type of
structural information. The results showed that the both-
hand model outperformed the single-hand model in gesture
recognition on both the NN and GNN models. It is because
both hands’ data contained a more comprehensive range of
information for understanding and recognizing gestures.

V. DISCUSSION AND FUTURE WORK

While the model’s recognition rate is inherently limited, this
is deemed acceptable given the modest scale of the dataset and
the substantial challenges involved in touch gesture recognition
only with EMG. The low recognition accuracy is attributed

to various factors. Mainly, each gesture embodies various
patterns, presenting a challenge to the model. The future
work will focus on big dataset building and multimodal touch
gesture recognition with EMG and motion data.
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