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Abstract. The widespread use of ubiquitous computing has led to peo-
ple spending more time in front of screens, causing poor posture. The
COVID-19 pandemic and the shift towards remote work have only wors-
ened the situation, as many people are now working from home with
inadequate ergonomics. Maintaining a healthy posture is crucial for both
physical and mental health, and poor posture can result in spinal prob-
lems. Wearable systems have been developed to monitor posture and
provide instant feedback. Their goal is to improve posture over time by
using these devices. This article will review commercially available, and
research-based wearable devices used to analyse posture. The potential
of these devices in the healthcare industry, particularly in preventing,
monitoring, and treating spinal and musculoskeletal conditions, will also
be discussed. The findings indicate that current devices can accurately
assess posture in clinical settings, but further research is needed to val-
idate the long-term effectiveness of these technologies and to improve
their practicality for commercial use.

Keywords: postural analysis · wearable technology · commercial de-
vices · spinal posture.

1 Introduction

Having poor posture can affect both physical and mental health. Poor posture
can lead to physical discomforts, such as back pain, neck pain, and shoulder pain,
which can affect productivity. It can also lead to poor circulation and decreased
oxygen intake, leading to fatigue and difficulty concentrating. Mentally, poor
posture can affect self-esteem and confidence. Standing or sitting with poor
posture can give off the appearance of being unconfident or disinterested, which
can negatively impact social interactions and opportunities. Poor posture can
also lead to poor sleep quality, as it can cause discomfort and difficulty finding
a comfortable position. In addition, poor posture can lead to long-term health
problems, such as arthritis, osteoporosis, and degenerative joint diseases, which
can significantly impact the overall quality of life. Therefore, poor posture can
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have significant negative impacts on both physical and mental health, and it is
important to strive for good posture in order to avoid these disadvantages [33,
51, 16, 52].

Moreover, the term “posture” is often used in the context of sports and fit-
ness, and health but the definition of this term can be quite vague and subjective.
There are a variety of different factors that can contribute to poor spine pos-
ture, including muscle imbalances, poor core stability, and improper technique.
This lack of clarity makes it difficult for coaches, athletes, medical experts, and
researchers to accurately identify and correct poor spine posture, which can
negatively impact performance and overall health.

One of the main challenges with defining poor spine posture is that it can vary
depending on an individual’s body type and physical abilities. Some individuals
may have naturally fine spine posture due to their physical structure and muscle
balance, while others may struggle with poor spine posture due to previous
injuries or other physical limitations. This means that what constitutes poor
spine posture for one person may not necessarily be the same for another, making
it difficult to establish a clear and consistent definition.

Another issue with the definition of posture is that it can be influenced by
a variety of different factors. For instance, poor spine posture can caused by
muscle imbalances, where certain muscles are overdeveloped while others are
underdeveloped. This can lead to poor alignment and stability, which can make
it difficult to maintain good spine posture. Additionally, poor core stability can
also contribute to poor spine posture, as the core muscles play a crucial role in
maintaining proper alignment and balance.

The definition of posture can vary depending on the specific activity in which
it is being applied. For example, in sports such as tennis, a good spine posture
might involve a wide stance and a bent knee in order to generate power and
control on shots. In contrast, the office working environment posture can be
defined as the angle that hands make while resting on the table or the angle of
the neck while looking at the screen.

It is crucial to identify poor posture early and maintain good posture to
prevent injuries and the development of spinal disease. In medical field, hu-
man posture is assessed by the Bath Ankylosing Spondylitis Metrology Index
(BASMI) using a measuring tape and goniometers to obtain the measurements.
Incorrect use of the instruments, erratic or compensatory movements of the sub-
ject or observation errors can appear, which can cause a lack of accuracy and
reproducibility [45, 11, 43]. On the other hand, the spine and sacroiliac joints cre-
ate complicated motions that cannot be analysed using the BASMI approach.
As a result, it is critical to research and develop new technology-based posture
estimation techniques that can assess joints directly with acceptable accuracy,
repeatability, and sensitivity to changes in information over time.

The human spine consists of 33 individual vertebrae separated by interver-
tebral discs and grouped into five regions: the cervical, thoracic, lumbar, sacral,
and coccygeal regions. Each vertebra has a unique shape and size, with the cer-
vical region having smaller and more mobile vertebrae than the lumbar region.
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As shown in Figure 1, the cervical spine is the portion of the spine within the
neck, and consists of 7 vertebrae (C1 to C7).

Fig. 1. Human Spine labelled with the
joins name and group

The 12 thoracic vertebrae (T1 to
T12) are contained within the rib cage,
and each vertebra articulates with a rib.
These are far less mobile, and this more
rigid structure of the thoracic spine pro-
vides the necessary support for the vi-
tal organs contained in the chest (heart
and lungs). The lumbar spine is the low-
est mobile segment and is commonly
referred to as the lower back. It has 5
vertebrae (L1 to L5), and these are the
largest vertebrae in the spine as they
have the greatest load to bear.

Optical marker-based devices are a
widely used technology for tracking mo-
tion and evaluating spinal mobility, but
they have certain limitations in clinical
settings due to their high cost, indoor-
only capabilities, and need for specific
equipment and conditions [21, 4, 6]. Re-
searchers have attempted to overcome
these issues by using technologies such
as inertial measurement unit (IMU) to
create wearable capture devices for hu-
man posture modelling [36, 75, 17, 20].
These wearables are more cost-effective
and can be used in any location without
the need for a complex setup.

Wearables are also widespread in the industrial and commercial markets for
assisting users in improving their quality of life. For instance, they provide con-
tinuous and personalised health monitoring, physical activity, and vital signs
while offering features like stress tracking, GPS tracking, and hands-free access
to notifications and calls. Wearable devices for tracking spinal disorders during
daily activity as an indication of health status are a trending venue for health-
care. With 239 million units in demand worldwide and over 1.2 billion devices
expected to be in use by the end of 2025, with yearly sales approaching 400
million units in the year, the market forecast for wearables is optimistic [3, 59].
Therefore employing wearables for spinedisorder and correction feedback appears
promising from a business perspective.

The introduction of new wearables and new sensor technologies has dramat-
ically exceeded the limitations of traditional data capture methods, making it
possible to acquire significant amounts of data[57]. However, with emergence of
more complex data and gradual sharing of various clinical data sets, the sam-
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ple size and potential predictor variables can exceed tens of thousands [44].
Traditional data analysis methods can no longer cope effectively, so alternative
methods (e.g. complex data analysis) are needed to process such large amounts
of information. Moreover, the fact that humans often present a much more com-
plex posture in everyday life than in experimental settings has led to the validity
of some of the datasets being questioned in practical applications [49]. As a re-
sult, one of the most critical challenges today is consistently collecting valid data
over extended periods in complex environments outside the laboratory.

Machine learning (ML) has been shown to outperform classical computa-
tional methods in various tasks, including big data processing, data prediction,
posture perdiction and object detection, thanks to rapid development of Artifi-
cial Intelligence (AI) field [30, 5]. A subset of ML, Deep Learning (DL), has led
to significant advances and accuracy improvements in 2D human posture esti-
mation tasks based on images and single-frame sequences [46]. The use of ML-
derived algorithms and data models can enable the faster conversion of diverse
and large databases into low resource-consuming applications on low-cost devices
(e.g., smartphones, tablets, laptops) [62, 34], save significant manual time, and
circumvent potential errors caused by humans to aid faster and more accurate
real-time decision-making.

Furthermore, some studies have used multi-stage classification models to im-
prove the recognition of complex postures. These models have achieved satisfac-
tory accuracy rates in specific pose acquisition and localised body recognition.
However, there are still significant limitations in full-body generic pose acqui-
sition and in collecting data in complex environments in the real life. Several
studies on postural assessment have also been developed. Wu et al.[77] proposed
three criteria, namely joint angle, arm orientation and type of joint motion, that
could be used to assess the forearm and upper arm. Khachai et al.[25] proposed a
postural description language to redefine human posture and assess whole-body
motion. However, they are difficult to assess quantitatively for non-standard
body parts and have not been applied to a generalised postural assessment of
the whole body. Meanwhile, ethicists have also raised risks and concerns about
using ML for individual assessment and decision-making [39, 15, 65]. The risks
are not only limited to a widespread lack of transparency in the data sets used for
modelling, but the credibility of the decisions made cannot be validated as there
is no uniform standard for posture assessment. The purpose of this systematic
review is to carefully review and compare the recent advances and shortcomings
in the use of wearable devices for estimating spinal posture, and to identify areas
for further research and development. The specific research questions considered
are as follows:

– RQ1. What are the recent studies and commercial wearable devices for
Musculoskeletal posture detection ?

– RQ2. Are these wearable devices practical in a real-world setting?

– RQ3. What are the limitations of the devices that capture human Muscu-
loskeletal posture ?
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– RQ4.What are the data analysis methods used for estimating Musculoskele-
tal posture ?

– RQ5. How can ML techniques contribute to estimating and assessing human
Musculoskeletal posture ?

2 Method

PRISMA 2020 flow diagram for new systematic reviews which included searches of databases, registers and other sources 
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Fig. 2. PRISMA flowchart on academic and commercial wearable devices to estimate
spinal posture

For this systematic review, the Reporting Items for Systematic Reviews and
Meta Analyses Guidelines (PRISMA) were employed across five sources, namely:
PubMed, MEDLINE, EMBASE, Cochrane, and Scopus. Following a general
screening with a list of suitable key phrases, the final selection of key search
terms was taken from pre-established headings on the OVID Medline (Med-line)
database. Among the key search phrases were: (“human spine posture”) AND
(“recognition” OR “estimation” OR “evaluation” OR “capture”) AND (“artifi-
cial Intelligence” OR “machine learning” OR “deep learning”) AND (“wearable”
, “sensor”). Spelling variants and synonyms were included and updated for each
database as needed. Figure 2 depicts the PRISMA flow chart. The search results
were limited to studies that met the following inclusion criteria:
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– Articles involving wearable technologies which are able to monitor posture
of human

– Data analysis methods were used for data analysis
– Control group experiments or accuracy validation were available
– Article published after 2010
– Articles written in English

We also have excluded following criteria from our screening:

– Articles that are only capable of identifying body positions such as walking,
sitting, lying down

– Wearable technology that focus on monitoring posture parts other than spine

The initial database search yielded 2343 potentially relevant articles; however,
154 duplicates were excluded. After applying inclusion and exclusion criteria,
1159 articles were eliminated. The remaining 268 titles and abstracts were then
scanned to identify potentially relevant studies. Of these, 234 did not meet the in-
clusion criteria due to: preliminary results (n=46), and non-experimental studies
(n=188). As a result, data were extracted from 30 studies that met the inclusion
and exclusion criteria.

After scanning chosen publications for bias using the Newcastle-Ottawa Scale
of Quality Assessment. We explored the selected articles in terms of sensor tech-
nology, region of interest, feedback presents, participant number, lab or real-
world setting, data analysis technique, assessment method, and the posture def-
inition employed. Table 1 provides a thorough summary of the outcome.

Furthermore, another inquiry on Google and Espacenet was conducted to un-
cover the commercially available posture wearable technology. This study found
and used 11 commercially available posture devices in total. “posture”, “wear-
able”, “device”, and “commercial” were utilised as search phrases. Wearables
with posture-recording and monitoring capabilities met the inclusion require-
ments; however, devices that mechanically adjusted posture, like braces, or prod-
ucts whose device specs were unknown or unavailable were among the exclusion
criteria. As demonstrated in Figure 2, the results of this investigation were con-
tributed to the PRISMA as additional source of search results.

3 Findings

The study conducted a comprehensive review of 30 articles selected from a total
of 2343 papers on human posture analysis. Out of the 30 selected articles, 14
(46%) used distance error measurement, 8 (26%) used model approximation, 5
(16%) used artificial intelligence, 2 (6%) used usability metric, and only 1 (3%)
used qualitative measurements for their data analysis.

In terms of the experimental setting, most experiments were conducted in
a laboratory environment (74%), 7 (23%) were conducted in a working envi-
ronment, and the remaining experiment (3%) did not specify the environment
setting. The acquisition points for human posture analysis varied from one local
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point to 20 points, with the majority of studies (83%) focusing on the spinal area
for sensor placement. Additionally, 2 studies (6%) used a modified shirt, the same
number of studies used an upside-down triangle shape for sensor placement, and
one study (3%) used a belt for sensor placement.

In terms of sensor technology, the majority of studies (70%) used IMU sen-
sors, 5 (16%) used commercial devices, 2 (6%) used strain gauge, 1 used textile,
and 1 used a smart garment. The number of participants in the experiments
varied from 1 to 360, with some studies not specifying the case study size. The
definition of posture was not uniform, with each study defining it differently.

The study also reviewed 11 commercial devices, investigating their size,
weight, body placement, presence of a feedback system, availability of collected
data for researchers, and the presence of research studies. In terms of weight,
wearables ranged from 7g to 36g. only 2 (18%) didn’t specify the weight of the
device. In terms of sensor placement, 3 (27%) focused on the upper body, 3
(27%) targeted the waist, and the rest aimed at the Neck, Clavicle, Nose ridge,
ear, lower back, and foot. The battery life of the wearables covered a range of 1.5
hours to 168 hours. Regarding the presence of a feedback system, most devices
(90%) had Mobile application feedback. In terms of the availability of data for
researchers, only 2 (18%) had data available for other researchers to use. The
details and features of commercial devices are available in Table 2.

4 Discussion

Wearables that monitor posture have the ability to prevent developing poor pos-
ture by providing real-time feedback and promoting the correction of poor pos-
ture. Many prototypes capable of assessing spinal position have been presented
in the literature. A diverse set of technologies supports these systems. IMUs are
the most regularly utilised, offering 3 to 10 Degrees of Freedom (DOF). Strain
gauges, flex sensors, fibre-optic goniometers, inductive sensors, and ergonomic
dosimeters are some other technologies employed in posture monitoring wear-
ables [56, 9, 64, 68, 8]. A comparative detail of the studies is presented in Tables
1 and 2. This section discusses the details and our findings from the reviewed
resources.

4.1 Posture definition

The definition of posture that each research study selected was surprisingly
broad. While two studies developed their own unique definitions of posture and
tested them in pilot studies, the majority employed some form of angular mea-
surement to assess posture. However, the specific location and the combinations
of angles and set-ups varied across studies. Defining posture presents a challenge
as it is contingent on the underlying causes of poor posture, thereby influencing
how it is measured. It is essential for the literature to establish a clear and stan-
dardised definition of posture to facilitate measurement and enable researchers
to utilise a unified metric for comparing different models. However, the current
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wide range of methodological approaches for measuring posture presents a chal-
lenge in this regard. Comparing studies that use various measures for defining
posture is difficult, given the lack of a standardised definition.

4.2 Sensor technology

An Inertial Measurement Unit (IMU) is a device that consists of sensors that
measure acceleration, angular velocity, and sometimes magnetic field strength.
These sensors can be used to determine the orientation, position, and movement
of an object. IMUs are often used in wearable devices for posture detection be-
cause they are small, lightweight, and can operate without the need for external
references. Several types of sensors are commonly used in IMUs, including ac-
celerometers, gyroscopes, and magnetometers. Each of these sensors measures
a different physical quantity, and the data from these sensors can be combined
using algorithms to determine the orientation and movement of the device. The
degrees of freedom (DOF) in IMU sensors refer to the number of independent
axes along which an object’s motion can be measured. Generally, an IMU sensor
can have 3, 6, or 9 DOF. A 3 DOF IMU can measure acceleration along the three
axes of X, Y, and Z, while a 6 DOF IMU can measure both acceleration and
rotational velocity around these three axes. On the other hand, a 9 DOF IMU
can measure all three axes of acceleration, rotational velocity, and the direction
of the Earth’s magnetic field. Generally, a higher number of DOF in an IMU
sensor means more accurate measurements of an object’s motion and orienta-
tion. Only 4 (13%) publications in this systematic review used IMU with 3 DOF,
The majority, however, used IMU with 6 DOF that is possibly due to factors
such as cost, power consumption, application requirements, and simplicity of
data processing. 12 (40%) publications measured the posture concurrently with
a combination of two to three sensors along with IMU. Three studies exclusively
employed texture and pressure sensors, whereas one research incorporated an
optical sensor (light).

4.3 Sensor Placement

Wearable placement of the body was an interesting aspect of this systematic re-
view. While the majority of studies considered curvature and the spine’s struc-
ture related to poor posture, each of them chose various spine locations for
measurement.

14% of studies focused on the cervical, 21% targeted the sacrum and 28%
aimed at Lumar, while the majority (35%) of studies considered the thoracal
region of the spine for their measurement.

4.4 Environmental Setting

Experimental studies often rely on controlled environments to minimise con-
founding variables’ influence and ensure that the results are reproducible. This



12 Narges Pourshahrokhi, Yitong Sun, and Ali Asadipour

is why many experiments are conducted indoors and in laboratory settings. In
these controlled settings, researchers can carefully manipulate the independent
variables and measure their effects on the dependent variables while keeping
other variables constant. Additionally, laboratory equipment and instruments
can be calibrated and standardised to reduce measurement errors, which is par-
ticularly important when conducting high-precision experiments. However, the
controlled nature of laboratory experiments also limits their ecological validity
or the extent to which the results can be generalised to real-life situations. Fur-
thermore, laboratory equipment and facilities can be expensive or impractical
for real-life usage. While laboratory experiments have their advantages, they
may not always be practical or feasible when studying phenomena that occur in
the real world or in outdoor environments. However, outdoor experiments also
present many challenges, such as the lack of control over environmental condi-
tions, difficulty in replicating the same conditions across multiple experiments,
and the potential for confounding variables to influence the results. As a result,
experimental designs for outdoor settings often involve compromises between
control and ecological validity. In this systematic review majority, (84%) of ex-
periments were conducted in a laboratory and controlled environment only five
(16 %) experiments were adapted to real-life experience. It is necessary to design
practical wearables in real work to be helpful and impactful.

4.5 Data Availability

In this systematic review, we observed that data for other researchers were only
available in some cases. Publicly available data can encourage further analysis
and replication of the findings. It also helps researchers in the field to improve
existing work and develop more optimised outcomes. This can be particularly
important in posture detection and public health, where access to data can in-
form policy decisions and lead to improvements in people’s care. However, in
other cases, the data may be restricted due to privacy concerns or ownership is-
sues. However, the data may be restricted in other cases due to privacy concerns
or ownership issues. For example, wearable technology such as fitness trackers
or smartwatches can collect large amounts of data on individuals’ health and
behaviour, but this data may be subject to privacy laws or the terms of service
of the device manufacturer. The lack of availability of data from wearable tech-
nology can pose challenges for researchers who are interested in studying health
or behaviour. While wearable devices can provide valuable insights into individ-
uals’ activity, spine structure, and posture, access to this data may be limited
by factors such as cost, privacy concerns, or proprietary algorithms. This can
create barriers to replicating studies or conducting meta-analyses, which rely on
the availability of large datasets. Additionally, the ownership of the data may
be unclear, which can make it difficult for researchers to obtain permission to
use the data or to share it with other researchers.
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4.6 Data Analysis

In terms of data analysis, while existing and reviewed papers had valuable tools
for evidence-based decision-making, the data analysis methods used in these re-
views are often relatively basic. This can limit the accuracy of the outcome,
as it may not fully capture the nuances of the underlying data. One potential
way to improve the accuracy of systematic reviews is by incorporating AI and
ML techniques. AI and ML can be used to analyse large datasets and iden-
tify patterns that may not be immediately apparent using traditional statistical
methods. This can help to increase the accuracy of the outcome by providing a
more nuanced understanding of the data. AI and ML can be particularly useful
in scenarios with wearables that often involve significant and complex datasets.
This can help to identify gaps or inconsistencies in the literature and provide
insights into areas that may require further research.

5 Beneficiary In Well-being and Healthcare

Wearable technologies have the potential to revolutionise the way we monitor
and improve our health and well-being, and one area where they have made
significant strides is in the detection of human posture. These technologies can
be used to not only identify poor posture, but also provide feedback and coaching
to help individuals improve their posture and reduce the risk of injury or pain. In
this systematic review, we also explore the application of wearable technologies
for human posture detection and the benefits they offer for both individuals and
healthcare professionals.

One of the primary benefits of wearable technologies for human posture de-
tection is their ability to continuously monitor posture throughout the day. Tra-
ditional methods of posture assessment, such as manual observation or static
photographs, are limited in their ability to capture posture changes over time
or in different positions. Wearable technologies, on the other hand, can track
posture in real-time, allowing for a more comprehensive understanding of an
individual’s posture habits and patterns.

One of the most significant advantages of wearable devices is their potential
to facilitate behavioural modification and promote positive lifestyle changes. By
continuously monitoring posture habits, these devices create a feedback loop that
encourages individuals to adopt healthier postural habits in their daily lives. As
users become more conscious of their posture, they are likely to make conscious
choices to prioritise good posture, not just during device usage but throughout
their day-to-day activities. This behavioural modification can extend beyond
posture, leading to increased awareness of overall health and well-being.

In addition to providing individuals with a convenient and accurate way to
monitor their posture, wearable technologies for posture detection also offer ben-
efits for healthcare professionals. By providing continuous posture data, these
technologies can help healthcare professionals identify patterns and risk factors
for injury or pain, and provide more targeted interventions and treatment plans.
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For example, a physical therapist working with a patient who suffers from chronic
back pain could use wearable posture detection technology to identify specific
postures or activities that may be contributing to the patient’s pain, and de-
velop a treatment plan based on this information. Moreover, using vision-based
technology has raised concerns about the potential invasion of privacy, as they
can capture personal information and activities without the individual’s consent.
Additionally, cameras can be hacked or accessed without the owner’s knowledge,
putting them at risk of cyber attacks or identity theft. Unlike vision-based tech-
nology, wearables do not capture visual data and instead rely on sensors to collect
information. Thus, using wearables can maintain the benefits of technology while
protecting privacy, making them a viable alternative to vision-based technology.

The boundary between smart health wearables and medical devices is becom-
ing blurred with advancements in technology, allowing patients to take a more
active role in their health and manage ongoing conditions. However, the use of
commercial wearables in healthcare has both benefits and drawbacks. Health-
care professionals may be overwhelmed with the increase of patients bringing
their own data to appointments, leading to confusion and tension. Alternatively,
healthcare professionals and researchers could collaborate to validate wearable
devices as a supportive tool in the healthcare system.

The use of wearable technology in the field of spine posture analysis offers
several potential benefits, including:

– Early Detection of Postural Issues: Wearable technology enables real-time
monitoring of spinal posture, which allows for early detection of postural
issues. Early detection of these issues can lead to prompt intervention and
prevent more serious problems from developing in the future.

– Improved Treatment Outcomes: By providing more accurate and detailed
information about spinal posture, wearable technology can lead to improved
treatment outcomes for individuals suffering from back pain, spinal injuries,
or other postural problems.

– Increased Accessibility: Wearable technology offers an affordable and acces-
sible solution for individuals to monitor their spinal posture, regardless of
their location or access to healthcare facilities. This increased accessibility
can lead to earlier and more effective treatment for postural issues.

– Better Understanding of Spinal Mechanics: Wearable technology can provide
valuable data on spinal mechanics, which can help medical professionals
better understand the causes of postural issues and develop more effective
treatments.

– Improved Compliance: Wearable technology can provide real-time feedback
on posture, which can encourage individuals to adopt better postural habits
and improve compliance with treatment plans.

The use of wearables in healthcare is still in its early stages, and its potential
applications and limitations are yet to be fully understood. Wearable technol-
ogy has the potential to offer numerous benefits to healthcare providers and
individuals alike. By enabling real-time monitoring and improved understanding
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of spinal mechanics, wearable technology can help prevent and treat postural
problems, leading to improved health outcomes for individuals.

6 Conclusion

This paper has reviewed the current state of the art in wearable devices for mon-
itoring and detecting spinal posture, as well as commercial devices. The current
method for analysing posture is through radiography, but optical methods are
emerging as a potential alternative. This paper shows that despite the benefits
of using various technologies to measure posture, more research is needed to
improve their accuracy, determine their clinical usefulness, and enhance their
practicality before they can be widely adopted.

Furthermore, these laboratory-based methods are not suitable for daily pos-
ture monitoring. Wearable technology could fill this gap by providing objective
measurements of posture. However, the lack of standardisation in posture def-
initions remains a challenge. Although there is a growing trend of commercial
wearable devices using IMUs for continuous data collection, more research is
needed to confirm their validity. Their data could potentially be used to detect
spinal conditions earlier and more easily.

Our review highlights the advances made in this field, as well as the limi-
tations that must be considered when designing and evaluating these devices.
We have also identified several key concerns, including the availability of data,
restrictions in experiment environment settings, data analysis, sensor technology
and placement, and the potential application of these devices in healthcare.

One of the key challenges facing researchers and practitioners in this field
is the need to balance the advantages of wearable devices with the limitations
that arise from their use. While wearable devices offer many potential benefits,
such as increased accuracy and real-time monitoring, they are also subject to
limitations, such as the standardised definition of posture and employing AI
for data analysis. Future research should continue to address these challenges
and work towards developing more reliable and accurate wearable devices for
monitoring spinal posture.

Overall, the findings of this paper emphasise the need for continued inno-
vation in wearable technology, with a particular focus on the development of
devices that can be used in various environmental settings, provide reliable and
accurate data, and have clear applications in healthcare. By addressing these
concerns, researchers and practitioners can work towards developing more effec-
tive interventions for spinal posture monitoring and detection, with the potential
to improve patient outcomes and quality of life.
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