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Abstract—Earthquake significantly impact human life and
economic activities, necessitating efficient search and rescue
operations to minimise loss and damage. As AI and robotics
become widely applyed in these operations, the need for large,
high-quality synthetic visual data has increased rapidly. However,
current earthquake simulation methods, which primarily focus
on the destruction of individual building frames, fall short
of providing visually realistic simulations for multi-building
urban scenarios. In response to the need, we propose a novel
earthquake simulation environment based on the Chaos Physics
System in Unreal Engine. This method aims to provide high-
resolution, comprehensive visual and scenario simulation data
for AI and robotic training in search and rescue operations. We
employ actual seismic waveform data from an online database
and process virtual building models for destructive simulations.
Harnessing the capabilities of the game engine, we achieve
realistic rendering, accurate physical collisions, and three-degree-
of-freedom geological motion, surpassing traditional simulation
frameworks in computational efficiency and user-friendliness.
The proposed simulation environment offers a high level of
detail and realism, serving as a rich, iterative data source
for AI training in path planning and image recognition tasks
related to earthquake rescue operations. We demonstrate the
effectiveness of our approach through three specific AI-involved
tasks, including similarity detection, path planning, and image
segmentation.

Index Terms—Earthquake Simulation, Virtual Environment,
Artificial Intelligence, Robotic Training, Unreal Engine

I. INTRODUCTION

Earthquakes, as recurrent natural disasters, profoundly im-
pact human life and economic activities [1]. In an effort
to enhance the efficiency of earthquake rescue operations
and mitigate the loss of life and property, researchers are
continuously exploring advanced search and rescue methods
and technology [2]. Integrating artificial intelligence (AI) and
robotics has been increasingly prominent in earthquake re-
sponses, encompassing tasks such as path planning, automatic
obstacle avoidance, and image recognition [3]. Owing to the
unpredictable and complex nature of earthquakes, developing
methods for iterative training of these technologies across
diverse scenarios is crucial for ensuring their robustness and
reliability in related missions.

In recent years, virtual game engines have shown immense
potential in disaster training and serious gaming applications,
such as firestorm and flashflood simulations [4]. These engines

considerably reduce operational complexity and shorten train-
ing cycles compared to traditional scientific simulator. Concur-
rently, realistic rendering techniques based on ray tracing have
been proven effective in substituting real-world data in various
visual recognition research areas [5]. However, there remains
a dearth of research on constructing virtual environments for
earthquake simulations using game engines.

We present RESenv, an environment for earthquake simula-
tion utilising the Chaos physics engine within Unreal Engine 5
(UE5). By obtaining actual seismic waveform data from online
databases and importing it into UE5, we simulate building
destruction in the virtual environment. The primary objective
of the approach is to provide high-resolution, comprehensive
visual and scenario simulation data for search and rescue
missions and robotics, serving as a synthetic data source for AI
training in path planning and visual recognition applications.

The main contributions of this study are as follows:
1) We propose a method for realistic earthquake simulation

based on UE5, which implements comprehensive de-
structive simulations of multi-building scenarios, using
actual seismic data obtained online.

2) Three specific AI-involved tasks demonstrate the effec-
tiveness of our approach, including similarity detection,
path planning, and image segmentation, proving that our
virtual seismic environment can effectively offer a high-
quality dataset for AI training.

3) By leveraging the game engine’s capabilities, we con-
siderably reduce and streamline the complexity and
work cycle of traditional methods. The intuitive interface
eliminates domain-specific constraints, broadening user
accessibility.

II. RELATED WORK

This section reviews research related to earthquake simula-
tion and AI training for rescue missions, which form the basis
for our proposed UE-based earthquake simulation approach.

A. Earthquake Simulation
Earthquake simulation, a longstanding research focus in

geophysics, geology, and engineering [6], has seen significant
advancements due to recent progress in computer hardware.
This has enabled more sophisticated modelling of earthquakes



and consequent building damage using numerical simulation
techniques [7], [8]. Stress simulations of individual buildings,
initially aimed at analysing seismic stress-induced deforma-
tion and structural optimisation, have matured, and some
researchers have employed finite element analysis (FEA) for
assessing earthquake-induced building damage and exploring
risk mitigation strategies [9], [10]. However, due to real-world
buildings’ structural complexity, material diversity, and com-
putational constraints, most simulations only model primary
load-bearing structures and facades, resulting in discrepancies
between simulated and actual outcomes. Current earthquake
platforms, constrained by the complexity of the physics engine
limits and simulating only single or two degree-of-freedom
(DOF) vibrations, fail to mimic the three DOF motions of
actual earthquakes [11], [12].

Urban multi-building simulations, compared to individual
building simulations, emerged much later. One of the most
widely used frameworks is HAZUS, developed by the United
States Federal Emergency Management Agency (FEMA) [13].
Based on standardised Geographic Information System (GIS)
methodologies, HAZUS is employed for estimating the im-
pact of earthquakes, post-earthquake fires, floods, and hurri-
canes, among other disasters. To overcome the limitations of
HAZUS’s single DOF model, Japanese researchers introduced
the Integrated Earthquake Simulation (IES) framework, utilis-
ing multi-dimensional data fusion calculation methods [14].
Subsequently, Turkish researchers developed a regional build-
ing simulation method for Istanbul using MATLAB, based
on the IES framework [15]. Similar to individual building
simulations, multi-building simulations are also constrained
by software limitations in terms of physical collisions and
building structural complexity. Although a study by David et
al. employed large-scale computing to simulate the motion
of geological faults and measure building responses [16], the
focus of these research predominantly lies in calculating the
complexity of geological structures, with scant attention paid
to the fidelity of building structures.

In our approach, we utilise the Chaos destruction system1

and Nanite visualisation system2 within the UE 5 game
engine, achieving previously challenging fracture and frag-
mentation simulations for different materials and complex
hybrid structures, accurate physical collisions, and three DOF
geological motion. Our method demonstrates a significant
improvement in computational efficiency and cost compared
to conventional techniques, enabling real-time and accelerated
calculations on consumer-grade computers. Benefiting from
the user-friendliness of the game engine, we have established a
pre-fabricated library of materials and structures readily avail-
able to users by creating pre-set programs, greatly simplify-
ing operational difficulties compared to traditional simulation
frameworks, and thus enabling researchers from various fields
to use our approach with ease.

1https://docs.unrealengine.com/5.1/en-US/destruction-overview/
2https://docs.unrealengine.com/5.1/en-US/nanite-virtualized-geometry-in-

unreal-engine/

B. AI Training for Rescue Missions
AI applications in search and rescue operations, as well as

the robotics domain, are becoming increasingly widespread.
Numerous researchers are dedicated to employing deep learn-
ing and reinforcement learning techniques for complex terrain
path planning, image recognition, and other related tasks
[17], [18]. For instance, the study by LinLin et al. utilised
the SBMPC algorithm to investigate path planning problems
for search and rescue robots [19]. Xuexi et al. explored
indoor search and rescue using Simultaneous Localisation and
Mapping (SLAM) and Light Detection and Ranging (LiDAR)
methods [20]. Farzad’s research introduced the application of
deep reinforcement learning (DRL) methods in search and
rescue robot tasks [21]. These studies underscore the potential
of artificial intelligence in enhancing the effectiveness and
efficiency of search and rescue missions.

The success of AI approaches largely depends on the avail-
ability of ample and high-quality data as training inputs, which
can accurately represent the complexities and dynamics of
environments affected by earthquakes [22]. However, in earth-
quake rescue scenarios, collecting and obtaining real-world
data poses significant challenges. To address data limitations,
researchers have developed various virtual environments, such
as the RoboCup Rescue Simulation Environment [23], US-
ARSim [24], and the BCB environment developed by Laurea
University of Applied Sciences [25], for creating training data
for deep learning and reinforcement learning algorithms in
search and rescue operations. Nonetheless, these frameworks
currently lack the level of texture rendering realism and
detail richness required for training AI models that rely on
image recognition and depth data inputs. This also results in
substantial discrepancies between the volume and complexity
of simulated scenarios and actual search and rescue missions.

Our proposed simulation environment fills this void by
aiming to provide a highly realistic and detailed virtual
earthquake damage environment using a ray-tracing system
and authentic scanned textures. The environment allows for
generating high-quality training data that can be directly used
for AI algorithm visual recognition and depth data scanning.
Weather phenomena, lighting conditions, and post-earthquake
dust will be effectively simulated.

III. METHOD

RESenv executes the earthquake simulation in a three-stage
process: data preparation, data binding, and simulation.
Figure 1 describes the flowchart of the method.

A. Data Preparing
Virtual Building Processing Due to the flexibility in

model importation within UE, virtual building models based
on Polygon Mesh can be acquired from various sources.
For instance, manual creation using modelling software like
Blender, computation from GIS data in CityEngine software
[26], or generation via AI methods [27]. However, to ensure
that the building models can be effectively simulated, the
models first need to be pre-processed before importing them



Fig. 1. Flowchart of RESenv for earthquake simulation. There are three steps: scenario preparation, data binding, and simulation. During the data preparation
phase, 3D building models are imported into UE, which are then pre-fractured by material groups. Actual seismic wave data was acquired from the IRIS
online database and imported via a graphical UI system. In the data binding phase, the 3D buildings are bound to the virtual terrain by PCA through an
automated analysis program. The seismic wave data is converted into terrain displacements for binding. During the simulation phase, RESenv is run at a
specified frame rate, 40 FPS for desktop computer simulation, 90 FPS for VR training, and 240 FPS for high frame rate sensor training. As the simulation
begins, the seismic wave data displaces the terrain, which in turn causes the pre-fractured 3D buildings to be destroyed. RESenv is interactable throughout
the simulation.

into our method through UE. Initially, the size units of the
models need to be standardised. Typically, Polygon Mesh-
based models do not have a unified scale unit like NURBS
Surface models; the models need to be pre-scale to align to the
cross-platform unified units. In RESenv, the default length unit
in UE5 is adopted (centimetre) . Secondly, building models
need to be segmented according to distinct materials, such as
concrete, bricks, and wooden structures, to set up pre-fracture
settings3 separately after importing into UE.

In contrast to traditional earthquake simulation platforms
that only simulate the physical collision between blocks and
joints, our approach based on the Chaos Physics System in
UE5 can achieve effects similar to real building destruction.
Figure 2 presents examples of pre-fracture settings for three
different wall materials. As seen in the figure, different seg-
mentation strategies and levels can be applied according to
distinct materials. The fractured geometry collection can be set
with different break-force thresholds to represent the strength
of the materials.

Seismic Wave Data Acquisition The seismic wave-
forms used by earthquake simulation can be divided into two
categories. 1) Waveforms recorded from actual earthquakes
that have already occurred. These waveforms can be obtained
from publicly available datasets online. An earthquake event
is often recorded by multiple seismometers located at differ-
ent geographical locations; by cross-comparing and applying
algorithms for noise reduction, the absolute motion of the
Earth’s surface can be authentically reproduced in simulation
platforms. 2) Waveforms synthesised through algorithms [28],
[29]. In seismic resistance testing of buildings, researchers
have developed various methods to synthesise earthquake
waveforms in order to assess the impact of different levels
and types of earthquakes on building structures. This enables
the simulation platform to carry out unlimited iterations of
earthquake tests in any conditions. Our method primarily aims
to simulate the damage sustained by urban buildings in actual
earthquakes to provide realistic datasets for AI visual-based
training; therefore, the method initially implements the simu-
lation of global earthquake waveforms obtained from the IRIS
online database4. The acquired seismic waveform data records
three DOF of geological movement, named ”BH1” (east-west

3https://docs.unrealengine.com/5.1/en-US/destruction-overview/
4http://ds.iris.edu/ds/nodes/dmc/data/

Fig. 2. Three examples of pre-fracturing of walls in different materials. Once
the building has been imported into UE, the 3D model needs to be pre-
fractured in order to be damaged accordingly in the earthquake simulation.
The pre-fracture is set according to the material properties of the building. The
three instances show the set-up process, segmentation methods, and explosion
view for concrete, brick wall, and stone structures, respectively.

direction), ”BH2” (north-south direction), and ”BHZ” (vertical
direction). We have implemented a user-friendly user interface
(UI) and Python-based automatic format conversion program
in UE (Figure 3), enabling users to directly obtain seismic
waveforms by clicking on the geographical location and event
occurrence time on the global map without the need for
complex data searches and imports. Once the user selects the
required data, the waveforms are automatically converted into



Fig. 3. The RESenv user interface for acquiring IRIS online seismic data.
The user interface contains an interactive world map that can be clicked on
to select the seismic data to be acquired. The column on the right side allows
to define time ranges and earthquake levels as a filter.

a ”DataTable” file supported by UE.

B. Data Binding with Virtual Terrain
Similar to reality, our method simulates the anchor force

exerted on buildings by ground movement. Consequently,
the RESenv requires a virtual terrain in UE to support the
buildings and bind the movements generated by the earthquake
data.

The foundation of the building model is bound to the
virtual terrain using the ”Physics Constraint Actor” (PCA)5

in the UE physics system. This binding establishes a set of
physical anchor force constraints between the building and the
terrain; the building’s linear movement threshold and twisting
threshold in the Cartesian coordinate system can be set by the
building’s materials and volumes. Similar to real-world events,
during minor earthquakes, the building’s foundation and walls
will experience slight displacements without detaching from
the ground. In a more significant earthquake, the foundation
and walls will be fractured and collapse according to the
building structure. The RESenv implemented a C++ program
to automatically analyse the building foundation’s shape to
place PCA binding points. This program also estimates the
building’s volume and preliminarily sets the threshold values
of various constraint forces at each binding point for quick
configuration. Figure 4 demonstrates the distribution of bind-
ing points when a building is automatically bound to the
ground in our approach.

To enable the virtual terrain to move in space like the earth’s
surface during an earthquake, we bind the previously acquired
earthquake waveform data ”BH1”, ”BH2”, and ”BHZ” to the
”X”, ”Y”, and ”Z” axes of the terrain’s movement using a
C++ program automatically. The original waveform frequency
of earthquakes in the IRIS database is 40 Hz (40 recorded

5https://docs.unrealengine.com/5.1/en-US/physics-constraints-in-unreal-
engine/

Fig. 4. Example of a 3D building automatically bound to a virtual terrain by
the Physics Constraint Actor (PCA) placement program.

samples per second). The RESenv implements three different
frame rates in UE: 40 FPS, 90 FPS, and 240 FPS, correspond-
ing to the desktop computer simulation, VR training, and high
frame rate sensor data synthesis, respectively. The data for 90
and 240 FPS is pre-generated using the wavelet interpolation
algorithm.

C. Simulation

Upon completion of the data binding, our method can be
executed in UE in Simulate In Editor (SIE) mode6. It is
worth noting that, unlike traditional simulation approaches,
our method inherits features from Unreal Engine, allowing all
virtual assets and fractured models to be interactive during run-
time. Applications such as VR search and rescue training and
robotic dynamic obstacle avoidance will transition from static
scene training to dynamic training with time-varying proper-
ties. Figure 5 displays an example of a complete simulation
process. In this instance, a concrete frame and a brick wall
are bound to a flat virtual ground. The seismic data is sourced
from the magnitude 7.4 earthquake in Oaxaca, Mexico, on
June 23, 2020, recorded by the seismograph station coded as
TEIG. The simulation lasts 360 seconds and runs at a frame
rate of 40 FPS.

IV. EXPERIMENT

In order to verify the efficacy of our approach, two earth-
quake simulation experiments with three tasks were designed
with the aim of providing synthetic visual data for AI train-
ing. 1) Two historical earthquake events and two laboratory
experiments were reproduced and simulated with damage to
buildings with four different materials. The similarity between
real and simulated damaged buildings was assessed using a
pre-trained Vision Transformer (ViT) model. 2) Using GIS

6https://docs.unrealengine.com/5.1/en-US/in-editor-testing-play-and-
simulate-in-unreal-engine/



Fig. 5. An example showing the process of earthquake simulation by RESenv. In this example, a wall with a concrete and brick structure is pre-fractured and
bound to a virtual terrain. The data taken from the 7.4 magnitude earthquake in Oaxaca, Mexico, on 23 June 2020, recorded by the seismic station code-named
TEIG. The entire simulation lasted 360 seconds. Five frames were extracted to demonstrate the changes in distraction to the wall during the simulation.

data, we recreated a Japanese neighbourhood and then con-
ducted a 20 random endpoints robot path planning test in the
simulated post-earthquake area based on synthetic visual data.
The completion rates of the robot’s path and the success rates
of visual recognition en route are counted.

A. Realistic Simulation of Buildings
Four real-world earthquake-induced building damage sce-

narios are selected and re-created the destruction in a simulated
environment using RESenv to compare the accuracy of our
approach. Figure 6 presents the original references and sim-
ulation results of the four scenarios. Each scenario simulates
a building structure based on different materials. Two were
simulated on a laboratory shake table [30], [31], and two were
natural earthquakes [32], [33].

We obtained the building data and seismic wave data of the
two laboratory-simulated scenarios via email correspondence.
The seismic wave data of the two real-world scenarios were
directly obtained from the IRIS database through the RESenv
UI system, while the two buildings were reconstructed from
multiple viewpoints using multiple online references. All four
buildings were constructed in Blender, and surface textures
were obtained from the Quixel Megascans material library7.
The simulation was carried out in UE 5.1.1 on a Razor laptop
with an RTX-3070 GPU, an AMD Ryzen 6900HX CPU, and
16GB of RAM as the minimal requirement. The initial UE
scenario was set to the default configuration.

To ascertain the similarity between the simulated results
and the actual structural damage, specifically in the context
of robotic visual recognition tasks, we utilised a verified
ViT deep learning model, specifically designed for feature
similarity assessment. This model underwent pre-training with
the ImageNet-21K dataset and its efficacy was substantiated in
research conducted by Omini et al. [34] Images representing
real-world damaged buildings and those derived from our

7https://quixel.com/megascans

simulations were independently input in the ViT model to
compute their similarity. The final computational outcomes are
presented in Table I.

The results demonstrate that the simulations for all four
structures attained a considerable degree of resemblance to
real-world scenarios. Our proposed earthquake simulation
technique exhibits a robust capability to accurately replicate
the damage patterns induced by actual seismic events in
buildings. The observed discrepancies in the outcomes could
be attributed to variations in the pre-fracture parameters of
the 3D building materials, as compared to those of the ref-
erence structures. Consequently, these disparities give rise to
differences in the morphology and movement trajectories of
the fragmented masses within the simulation.

TABLE I
SIMILARITY OF THE FOUR SCENARIOS SIMULATED WITH RESENV.

Scenario Brick Wood Stone Concrete
Similarity 94.80% 90.07% 92.25% 89.34%

B. Scenario Simulation and Robotic Training
To evaluate the effectiveness of RESenv in conducting earth-

quake simulations within urban settings featuring clusters of
buildings for robotic training, two distinct tasks are designed.
Initially, the GIS data from a Japanese neighbourhood were
obtained via OpenStreetMap and subsequently converted into
a 3D scene utilising CityEngine. The scene was then imported
into UE. All buildings within the scene were automatically
anchored to the terrain using the program in RESenv, while
the terrain was linked to earthquake data. A robot model,
sourced from RoverRobotics R⃝, was positioned in the scene
and equipped with simulated RGB and depth camera sensors
(Figure 7.a, d, e). The robot was assigned two tasks: 1)
Utilising a DRL model based on SLAM, as proposed by
Shuhuan et al. [35], the robot was instructed to randomly select



Fig. 6. Earthquake simulation using RESenv for four actual scenarios. Two laboratory experiments (columns 1-2) and two actual buildings (columns 3-4)
were chosen. Row 1: The original forms of four buildings before the earthquake events. Row 2: Destruction of buildings following the earthquake events.
Row 3: The 3D models are recreated based on the actual buildings and are given textures and pre-fracture settings in RESenv. Row 4: Destruction results of
four buildings after RESenv earthquake simulation.

20 coordinates as endpoints for path planning and obstacle
avoidance testing within the simulated environment (Figure
7.b). The ratio of the completed length of each path to its total
length is recorded. This test aimed to verify whether our simu-
lation framework could provide effective earthquake scenarios
for AI path-planning methods with demonstrated efficacy.
2) Concurrently with Task 1, the Segment-Anything Model
(SAM)(model: ViT-H) [36] was selected as the state-of-the-
art for generalised image segmentation model to collect data
from RGB sensors for object segmentation (Figure 7.f). Image
segmentation and its edge detection serve as the foundation for
training AI models and path-planning tasks. For each frame
from the camera, we compared the alignment of edges between
the built-in UE segmentation (ground truth), SAM-processed
ground truth, and SAM segmentation (Appendix A fig.8. Row
2-3). By using the Canny algorithm with edge dilation for

pixel-level alignment deviation, the segmentation score was
calculated as the proportion of overlapping edge pixels to the
total edge pixels in the UE segmentation (Appendix A fig.8.
Row 4-6). The final success rate for each path is derived from
the average of all frames.

Upon completing the aforementioned tasks, the results (4
typical in Tabel II, full targets in Appendix B Tabel III) re-
vealed that in Task 1, pertaining to path planning, 80% of path-
planning trials achieved a 100% completion rate. When the
input images have a resolution of 1550 × 1162 with a dilation
kernel of 50 pixels, SAM achieved an overall 95% accuracy
in detecting edges when compared to SAM-processed ground
truth. These results prove our simulated post-earthquake sce-
nario can furnish an effective image segmentation data source
for visual recognition, thereby facilitating the training of
various visual AI models.



Fig. 7. Multi-building scenario earthquake simulation experiments in RESenv. Task 1 is to perform a robot path planning and obstacle avoidance test using
the pre-trained DRL SLAM to verify the effectiveness of the earthquake simulation scenario for robot training. Task 2 is to use SAM to perform image
segmentation detection on synthetic data from a RGB camera while the robot is travelling. Ultimately, the segmentation success rate will be counted. a:
buildings generated in CityEngine using GIS data. A rover robot is placed in the scenario to perform path-planning tasks based on SLAM DRL. b: A record of
20 randomly selected endpoints for the path planning task. c: simulated RGB camera view of the original scenario in UE. d: RGB camera view of the scenario
after an earthquake simulation. e: simulated depth camera view for SLAM DRL algorithm data input. f: RGB camera view with SAM image segmentation.

TABLE II
SUCCESS RATES OF DRL SLAM PATH PLANNING AND ACCURACY

OF IMAGE SEGMENTATION EDGES FOR 4 TYPICAL OUT OF 20 TARGETS

Tgt.
Pt.

Path
Plan.

Edges Acc.
UE Segment UE + SAM

Ker. 25 Ker. 50 Ker. 25 Ker. 50
1 Complete 81.2% 91.9% 89.9% 96.0%
8 Complete 76.9% 87.3% 96.4% 99.1%
14 96.55% 78.8% 90.1% 87.9% 95.2%
20 85.80% 74.2% 86.2% 90.4% 95.5%

Key Findings and Unforeseen Challenges The findings
indicate that our proposed earthquake simulation approach
effectively generates realistic urban destruction scenarios for
robot training. The high completion rates in Task 1 suggest
that our simulation environment is capable of providing chal-
lenging yet achievable path planning and obstacle avoidance
test scenarios for AI algorithms.

Moreover, in Task 2, we observed lower completion rates
for some paths. Upon further inspection, we attributed this
not to the complexity of the urban scenario itself, but to the
glare from the virtual sun interfering with the simulated RGB
camera used by the robot (Appendix A fig.8. Path-14, Path-
20), leading to visual recognition difficulties. This situation
has been overlooked in studies using ideal laboratory con-
ditions and similar simulation platforms. This highlights the

importance of considering the complexity and multifactorial
nature of real-world environments when designing and testing
AI algorithms for disaster response and recovery, rather than
focusing solely on object simulation.

V. DISCUSSION AND FUTURE WORK

Discussion Our study introduces an innovative earthquake
simulation environment, designed to generate realistic urban
scenarios for VR and robot training in the context of disaster
response and recovery. Using computer vision techniques such
as ViT, DRL SLAM, SAM, and our proposed earthquake
simulation method, we have demonstrated the effectiveness
of our approach by completing three distinct tasks: similarity,
path-finding success rate, and segmentation edge accuracy. Our
results show the environment is feasible for the deployment
of downstream tasks.

Limitation There are several limitations to our study that
should be addressed in future work. First, while our method
simulates seismic damage to buildings, it does not account
for the complexities involved in simulating the flexing of
foundations and land. Second, the building material parameters
used in our simulations are based on ideal parameters and
iterative settings, which may not accurately reflect various
building structures in different geographical regions. Finally,
the performance of the AI algorithms in our simulated scenar-
ios may be affected by various factors not considered in our



study, such as lighting conditions and the presence of smoke
or dust.

Future Works In the future, we plan to address the
limitations by integrating more diverse building models and
materials, potentially using perceptual similarity metrics, to
enhance the realism of RESenv. We will also explore the adapt-
ability of our approach to other disaster types, for instance,
floods, hurricanes, and tsunamis, to expand its applicability
in a broader range of emergencies. More strategically, in
addition to simulations focused on disaster damage, realistic
environmental multi-factor complexity, and stochasticity will
be focused on, such as sudden weather changes, with the aim
of creating a non-ideal extreme environment to increase the
robustness of AI models trained in RESenv.
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Fig. 8. Comparison of image segmentation and score calculation for 4 typical paths. Row 1: Synthetic RGB camera shot. Row 2: Object image segmentation
using UE5 built-in camera post-processing material (ground truth). Row 3: Image segmentation of the RGB shot image using the SAM model. Row 4: UE
segmentation edge map calculated using the Canny algorithm with edge dilation. Row 5: SAM segmentation edge map calculated using the Canny algorithm
with edge dilation. Row 6: The segmentation score was calculated as the proportion of overlapping edge pixels to the total edge pixels in the UE segmentation.



Appendix B.
TABLE III

SUCCESS RATES OF DRL SLAM PATH PLANNING AND
ACCURACY OF IMAGE SEGMENTATION EDGES FOR 20 TARGETS

Tgt.
Pt.

Path
Plan.

Edges Acc.
UE Segment UE + SAM

Ker. 25 Ker. 50 Ker. 25 Ker. 50
*1 Complete 81.2% 91.9% 89.9% 96.0%
2 Complete 76.3% 86.7% 88.6% 93.5%
3 Complete 79.2% 89.8% 87.9% 94.2%
4 Complete 75.6% 85.9% 86.8% 92.6%
5 Complete 82.5% 92.7% 90.8% 97.5%
6 Complete 71.8% 82.4% 85.0% 91.3%
7 85.4% 70.4% 81.1% 84.7% 90.8%
*8 Complete 76.9% 87.3% 96.4% 99.1%
9 Complete 79.9% 90.1% 89.5% 96.7%
10 Complete 81.0% 91.4% 90.6% 96.3%
11 Complete 80.2% 91.6% 90.4% 96.4%
12 Complete 81.6% 91.5% 89.9% 96.5%
13 Complete 80.7% 92.2% 90.2% 96.6%

*14 96.55% 78.8% 90.1% 87.9% 95.2%
15 Complete 81.3% 91.8% 90.0% 96.8%
16 Complete 80.9% 91.7% 90.5% 96.1%
17 92.21% 72.4% 85.0% 89.3% 94.9%
18 Complete 80.6% 91.4% 89.8% 96.7%
19 Complete 80.8% 91.9% 90.7% 96.3%

*20 85.80% 74.2% 86.2% 90.4% 95.5%


