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Abstract: Street view imagery (SVI) is a rich source of information for architectural and urban
analysis using computer vision techniques, but its integration with other building-level data sources
requires an additional step of visual building identification. This step is particularly challenging
in architecturally homogeneous, dense residential streets featuring narrow buildings, due to a
combination of SVI geolocation errors and occlusions that significantly increase the risk of confusing
a building with its neighboring buildings. This paper introduces a robust deep learning-based
method to identify buildings across multiple street views taken at different angles and times, using
global optimization to correct the position and orientation of street view panoramas relative to their
surrounding building footprints. Evaluating the method on a dataset of 2000 street views shows that
its identification accuracy (88%) outperforms previous deep learning-based methods (79%), while
methods solely relying on geometric parameters correctly show the intended building less than 50%
of the time. These results indicate that previous identification methods lack robustness to panorama
pose errors when buildings are narrow, densely packed, and subject to occlusions, while collecting
multiple views per building can be leveraged to increase the robustness of visual identification by
ensuring that building views are consistent.

Keywords: building identification; street view imagery; CNN

1. Introduction

This paper introduces a new visual identification method that links georeferenced
building footprints to building elevations extracted from street view imagery (SVI). The
goal is to improve a key step of data integration pipelines involved in building-level multi-
modal analysis of urban environments. This study focuses on architecturally homogeneous,
dense residential streets featuring narrow buildings with a high level of repetition (terraced
houses)—a common urban condition that is particularly challenging for previous visual
identification methods because the location and orientation errors associated with street
view panoramas can result in adjacent buildings being confused with each other. The key
takeaway of this paper is that globally aligning panorama poses with building footprints
using building elevations, detected and grouped across panoramas, significantly reduces
identification errors, as demonstrated by a quantitative comparison with previous identifi-
cation methods on a manually verified dataset collected in London, United Kingdom.

Panoramic street-level imagery is now an established source of data for many applica-
tions, including in health [1], environmental [2], and urban [3–5] research. In particular, the
combination of geographic information systems (GIS) with SVI has been effective at enhanc-
ing urban analysis ranging from land use classification to property valuation, qualitative
perception, and change detection [6]. These urban studies operate at various scales and
granularities: while research on visual perception [7] and urban form [8] tends to consider
elements such as building blocks and greenery as continuous components within street
views, research concerned with attributes such as building age [9] or value [10] focuses
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on individual buildings as individual atomic units. This discrete representation of the
city involves an additional challenging step in the data processing pipeline: the visual
identification of a large number of buildings within a set of images. This data integration
step is key to unlock the potential of many works that focus on the computer vision side of
building analysis, including change detection [11,12], façade segmentation [13,14], or urban
reconstruction [15]. Indeed, most existing building image datasets are anonymized, with the
exception of landmark recognition datasets (e.g., Google Landmarks Dataset v2 [16]), which by
definition are not representative of the city as a whole. The need for visual identification goes
beyond buildings: previous works have explored the automated auditing and inventory of
various urban objects using SVI [17], including street signs [18] and trees [19,20].

In this paper, visual identification involves the mapping of a specific pixel region in
a street view panorama to a building identifier, which can then be used to query other
databases (such as planning applications, energy performance certificates, or transaction
history). This mapping is performed via the proxy of a georeferenced building representa-
tion whose components are linked to an external identifier, such as a 2D map of footprints
(possibly augmented with elevation data) or a 3D mesh. However, both SVI and geometric
models spatially approximate the physical built environment, the former mostly because
of panorama location and orientation errors and the latter mostly because of geometric
simplifications [21]. Therefore, one of the main challenges of visual identification is the
misalignment between SVI and the georeferenced model. Its impact is significant: previous
works have reported an average alignment error of about 3 m [18,22], which is enough to
have the intended building elevation lie mostly outside the view window computed using
the building footprint, while parts of adjacent buildings become visible [23]. In a recent
work, Zou and Wang [24] reported that filtering out street view images that do not show
enough of the intended building elevation eliminated 60% of their original dataset. This
misalignment, when combined with repetitive buildings at a high density, as well as occlu-
sions (due to trees or vehicles) or privacy blurring, results in a high incidence of perceptual
aliasing, whereby buildings are confused with their neighbors. These issues may have a lim-
ited impact when data derived from visual analysis are aggregated over larger areas [2], but
they have the potential to become critical in many building-specific applications where the
automation of visual assessment is already being considered, such as mortgage decisions
depending on valuation [10,25], insurance premiums based on estimated vulnerability to
environmental risks [26–28], or the flagging of abandoned houses [24].

The above challenges are recurrent in the research literature around building identifi-
cation. Following the development of large-scale SVI services as well as handheld devices
featuring cameras and geolocation in the 2000s, researchers started investigating ways to
exploit geotagged visual data for applications such as image-based localization or visual
place recognition [29–34], augmented reality [21,35–37], and urban modeling [15,22,38,39].
Many of these early works acknowledged and often tackled issues arising from the relative
inaccuracy of GPS positioning in urban settings [21,22,29–36,39]. In parallel, advances
in computer vision and deep learning, particularly around image classification and re-
gression, object detection, and semantic segmentation, improved pipelines and unlocked
new methodologies for architectural and urban analysis [5]. However, the integration of
visual and geospatial data remains a challenge. On one hand, datasets are siloed and lack
interoperability [5]; on the other hand, models and algorithms that are directly imported
from computer vision lack any explicit use of the contextual information surrounding
geotagged visual data [40]. Moreover, the unique perspective provided by SVI comes
with specific limitations such as occlusions, privacy blurring, and geometric distortions [3],
hampering not only visual analysis but also integration with other data sources. Compared
to earlier works on image-based localization and augmented reality, the consumers of SVI
have expanded from individual users to large-scale data processing systems with stricter
requirements in terms of their ability to consistently and efficiently identify urban structures
across geographic areas and time periods. The growing recognition of both the usefulness
and limitations of SVI for urban analysis has led to increasingly sophisticated approaches
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relying on deep learning models to either filter out low quality views [24,41,42] or detect
objects of interest in the view [26,27,43]. Moreover, explicit building identification from SVI
has taken center stage in many recent works [44–47]. While these approaches address some
of the challenges around building identification from SVI, several research gaps remain.

The first gap revolves around the lack of architectural and urban diversity in
the data used to evaluate these methods. Across all three main types of approaches
found in the literature (coordinate-based view clipping [24,41,42,48–54], feature-based
alignment [30,33–36,44,55–57], and instance matching [26,28,43,45–47,58]), the buildings
considered in previous works are spaced relatively far apart, visually distinct, or both. This
ignores the specific challenges of the densely packed streets of narrow, visually similar
buildings, where misalignments and occlusions can hide the intended building so much
that an adjacent building appears more visually prominent. As a result, while this problem
is acknowledged [23], there is a lack of research on identification methods that are robust
to panorama pose errors whose magnitude is significant relative to the typical building
face width. This limitation is compounded by a second research gap: most existing urban
analysis pipelines only retrieve a single view per building face, and those that collect
multiple views [43,51] do not check their visual consistency, potentially resulting in views
of different buildings being assigned to the same building.

The objectives of this paper are three-fold: first, to propose a method to distinguish the
views of the same building face from views of neighboring building faces, and efficiently
group views accordingly, thus enabling consistent multi-view identification. Second, to
increase the robustness of building identification by proposing an approach that specifically
addresses panorama pose errors. Third, to evaluate this strategy against previous methods
on a dataset that features challenging examples absent from previous works, specifically:
narrow, densely packed, and visually similar buildings. To achieve these goals, this paper
introduces a new pipeline to collect as many good-quality views of each building as
possible using deep learning object detection, followed by a deep Siamese convolutional
neural network that is trained to recognize different views of the same building while
distinguishing between adjacent similar buildings. The model provides similarity scores
between pairs of building views that are used to perform spectral clustering, ensuring that
views of the same building elevation are efficiently grouped together. The resulting groups
are used to consistently align panoramas with their surrounding building footprints via
an efficiently implemented global optimization. This allows building elevations detected
in each realigned panorama to be robustly matched to their corresponding footprint.
Evaluating the method on a new annotated dataset (sampled from Google Street View in
various neighborhoods of London, where narrow terraced houses are common) shows that
it outperforms previous identification approaches.

In summary, this paper makes the following contributions:

• A method to group the views of the same building face across panoramas using a
deep similarity estimation network and spectral clustering.

• A pipeline to achieve a robust multi-view building identification, by combining this
grouping method with a fine-tuned building elevation detector and a global optimiza-
tion that realigns panoramas with their surrounding building footprints.

• An evaluation of the identification performance that compares the method to previous
approaches on a new challenging dataset.

2. Related Work

Linking geometric urban representations and ground-level imagery is a widespread task
that cuts across various applications and research fields. Street views of buildings are asso-
ciated with their 2D footprint or 3D model by studies on visual place recognition [30,33,34],
augmented reality [21,35–37], urban modeling [22,39,57,59], urban planning (e.g., change de-
tection [55] and land use [41,48,49,51]), urban studies (e.g., age estimation [9,58] and gentrifica-
tion [23,50]), environmental risk and energy assessment [26,28,42,54], and real estate [10,25,60].
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With such diverse contexts comes a diversity of names for the same task, including
building identification [44,58] and building recognition [45], image-model registration [57],
combining, linking or joining maps and SVI [47,48,56], as well as building-image retar-
geting [22] and mapping [6]. These terms are not without semantic overlap with other
tasks: building “identification” and “retrieval” can also refer to the task of finding the most
likely matches of an input picture in a pre-existing image database [29,31,37,61], which
is usually called “re-identification” when applied to persons [62] or vehicles [63]. The
kind of visual identification considered in this paper, however, matches building images
with their geo-referenced footprints or 3D models without any image already attached to
these buildings.

Previous research has approached this problem in three main ways: coordinate-based
view clipping, feature-based alignment, and instance matching.

2.1. Coordinate-Based View Clipping

The coordinate-based view clipping method takes a building footprint, retrieves
the closest panorama within a predefined radius, and uses their respective geographic
coordinates to calculate the appropriate heading, pitch, and field-of-view parameters to
generate a perspective view that should contain the building. This is typically the way
images are retrieved using the API of SVI providers such as Google Street View. Coordinate-
based view clipping is a very common method in fine-grained land use classification papers:
Li et al. [48] and Zhang et al. [49] predicted urban planning use classes at building or parcel
scale in New York City, Kang et al. [41] and Srivastava et al. [51] predict building function
labels from OpenStreetMap in various North American and French cities, respectively, while
Sharifi Noorian et al. [52] focused on mapping retail stores in Manhattan, and Yao et al. [53]
studied job-housing patterns in Shenzhen.

Coordinate-based view clipping is the simplest identification method because it does
not require any image analysis. Its main limitation, however, is that the building of interest
might not be entirely visible (or even not at all), or several buildings might be visible
without differentiating the intended one. This limitation is acknowledged in building-level
papers, with Ilic et al. [50] noting that geolocation issues may create false positives for
change detection or Lindenthal and Johnson [10] and Szcześniak et al. [54] mentioning
that occlusions may impede valuation and energy assessments, respectively. It is partially
addressed by Kang et al. [41], Zou and Wang [24], and Mayer et al. [42] using a CNN
classifier (or sequence of CNNs) to filter out non-building images, but as noted by Zou and
Wang, a significant portion of the dataset (60%) is discarded in the process. In contrast, the
method presented in this paper gathers views from multiple angles per building and uses
object detection to localize the buildings in each view.

2.2. Feature-Based Alignment

Feature-based alignment tackles panorama pose errors by finding correspondences
between geometric features (such as corners, edges, and outlines) derived from a georefer-
enced model and those detected in the image. It essentially casts visual identification as
an image-model registration problem. Approaches can be divided based on the dimen-
sionality of the model: using a 2D map, Cham et al. [30], Chu et al. [33], and Yuan and
Cheriyadat [56] all used classical computer vision filters to find building edges or corners
in SVI, compute candidate correspondences with map features, and use these candidates
to refine the camera pose estimation. Using a 2.5D map or 3D model, Karlekar et al. [35]
used silhouette matching through shape context descriptors, Lee et al. [34] performed this
alignment manually using a custom interface, while Taneja et al. [55,64], Arth et al. [36],
Chu et al. [39], and Park et al. [57] used semantic segmentation to extract building outlines
and aligned them with model-derived outlines. Ogawa and Aizawa [44] went one step
further by combining semantic segmentation with image depth estimation to find the
optimal alignment by computing the pixel-wise distance between this depth map and the
one derived from a 3D model.
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This type of visual identification is effective when accurate feature correspondences
can be found, but its performance drops when features are lacking, either because of heavy
occlusions [64], or because buildings are too dense and similar in shape, forming a uniform
built mass [44]. This is precisely the case with the data used in this study, which are rich
in terraced houses. In contrast, the optimization proposed in this paper improves the
robustness of image-model registration by finding correspondences between semantic
image regions across panoramas and ensuring that multiple views of the same building
overlap with its footprint.

2.3. Instance Matching

Instance matching is a more recent approach that relies on both geometry and texture
to locate and separate individual buildings. It uses deep learning to detect regions (as
bounding boxes or pixels) corresponding to individual buildings within a panorama (or
a derived perspective view). Each detected image region provides a viewing direction
expressed in 2D map coordinates via camera transformations that is used to intersect a
building footprint. Both Zhang et al. [45] and Khan and Salvaggio [46] applied a bound-
ing box detector to create a visual index of buildings in several North American cities
(with the latter using an additional filtering step based on semantic segmentation), while
Ogawa et al. [47,58] applied an instance segmentation model to do the same in Kobe. In
recent examples of instance matching for urban analytics, Wang et al. [26,28] also used
instance segmentation on SVI from Central and South American cities to estimate their vul-
nerability to environmental risks, while Xu et al. [43] estimated building heights in China.

While this approach is more robust to image–model misalignment than coordinate-
based view clipping, and more robust to partially hidden building edges than feature-based
alignment, it still assumes that the misalignment is not so severe that an adjacent building
could be erroneously matched, which is questionable in dense residential areas such as
those on which this paper focuses. Other works do combine building detection and
geometric alignment: Kelly et al. [22] introduced a hybrid method for urban reconstruction
that fuses a building footprint map, a 3D mesh, and multiple façade images extracted from
SVI using global optimization, while in a remote sensing context, Chen et al. [65] detected
and found correspondences between large structures to align satellite imagery. However, in
both cases, the data sources are different from those used by the method below: it does not
require a 3D mesh, and it operates on street-level rather than remote sensing images, which
have very different characteristics in terms of occlusions and perspective changes. More
importantly, the critical problem tackled in this paper is perceptual aliasing, i.e., how to
disambiguate adjacent similar-looking buildings in the presence of location uncertainty. The
novelty of its approach lies in formulating a global optimization that combines the typical
instance-model alignment error (between a bounding box and a building footprint) with an
instance–instance alignment error (between the bounding boxes of the same building across
different views). Doing so, this paper aims to combine the advantages of feature-based
alignment, instance matching, and building image retrieval into a robust visual indexing
method that identifies multiple views per building.

3. Method
3.1. Overview

In this work, the task of visual indexing from street views consists of linking each
building face visible from the street with a set of pixel regions from nearby panoramas.
Building footprints are represented as georeferenced polygons in a 2D map, equipped
with a unique identifier and an estimate of the elevation of their highest point. Street
view panoramas come with noisy location and orientation data (collectively referred to as
“pose”) provided by GPS and inertial sensors.

This paper uses the following definitions and notations (illustrated in Figure 1a).

• Building face Fi: the physical part of a building’s envelope, such as the façade, whose
components (i) are approximately parallel to a dominant plane; (ii) have a combined
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length of at least l f = 3 m; and (iii) are offset from each other by less than l f . Examples
are shown in Figure 1b. The centroid of Fi is noted Mi.

• Panorama Pj: 360-degree photo whose pixels map to spherical coordinates (polar and
azimuthal angles) relative to the panorama center Cj. The set of indices of panoramas
in which Fi potentially appears is noted as Ji.

• View window Wij: rectangular window, defined in world coordinates, through which
rays connecting Cj to all visible parts of Fi must pass.

• Elevational street view (ESV) Vij: image of building faces obtained by rendering a
panorama Pj through the view window Wij. While Fi is the “intended building face”
of Vij, it might not be visible, and adjacent faces might be visible. The set of elevational
street views with intended face Fi is noted as Vi.

• Building elevation Eijk: projected view of a building face as visible in an elevational
street view Vij.

• Building elevation group Gil: set of building elevations that correspond to the same building
face in different elevational street views of Fi. This face can be Fi or an adjacent face.

• Building elevation ray Rijk: ray from Cj through the center of Eijk ’s bounding box.

(a)

(b)

Intended
building
face Fi

Adjacent
building

face

View window Wij

Panorama center Cj

Elevational street view Vij

Building
elevation Eijk

1 2 3 1 2 3

1

2 3 4

5

1 2
3

3 m

Figure 1. Concepts and definitions: (a) Illustration of the definitions and notations used in this paper;
(b) Illustration of the concept of “building face” used in this paper. Four examples of building configurations,
viewed from the top, where each number is associated with a single color corresponding to a single face.

The visual identification method proposed in this paper, henceforth called group-
aligned matching, involves the following steps (illustrated in Figure 2):
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1. Find the set of exposed building faces, where each face Fi potentially appears in a set of
panoramas with indices Ji ̸= ∅. (Figure 2a and Section 3.2)

2. For each face Fi potentially visible in Pj, compute the view window Wij and render
the elevational street view Vij. (Figure 2b and Section 3.3)

3. For each elevational street view Vij, detect the visible building elevations {Eijk} that it
contains (Figure 2b and Section 3.4).

4. Across all elevational street views Vi of each building face Fi, estimate the visual
similarity between pairs of building elevations {Eijk, Eij′k′ | (j, j′) ∈ J 2

i , j ̸= j′}
(Figure 2b and Section 3.5).

5. Using this similarity metric, estimate building elevation groups {Gil} for each building
face Fi (Section 3.6).

6. Using these building elevation groups, optimize all panorama poses to improve the align-
ment of all elevation rays {Rijk} with the exposed building faces (Figure 2c and Section 3.7).

7. For each elevational street view Vij, obtain the building elevations whose ray Rijk
intersects the intended face Fi. If there is at least one, assign to Fi the building elevation
whose ray is closest to Mi. (Figure 2d)

(a)

1⃝

(b) 2⃝
3⃝

4⃝

(c)

5⃝

6⃝

(d)
7⃝

Figure 2. Overview of group-aligned matching. (a) Step 1: Exposed building faces are found using
building footprints and the poses of nearby street view panoramas (one green, one purple), then a face is
selected (thick orange line). (b) Step 2: Elevational street views are rendered. Step 3: Building elevations
are detected (red boxes). Step 4: Their pairwise similarity is estimated (red arrows, shade/thickness
reflects similarity). (c) Step 5: Building elevations are grouped (grouped ray intersections are shown in
red). In this example, two groups are found, potentially matching two building faces (shown as thick
lines, intended face in orange and adjacent face in blue). Step 6: The rays of each group are used to
align panoramas with the building footprints (alignment shown with dark arrows). (d) Step 7: Building
elevations are identified in each elevational street view if their aligned ray is closest to the centroid of the
intended face (identified building elevation box in orange, adjacent building elevation box in blue).
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For comparison with the identification approaches defined in Section 2, coordinate-based
view clipping stops at step 2, while instance matching includes steps 1–3 and 7. Steps 4–6
constitute the main contribution of this paper.

3.2. Finding Exposed Building Faces

The first step of visual identification is to define and acquire the entities that street
view elevations will be identified with. Specifically, the aim is to obtain a collection of line
segments with the three following properties: they are indexed (i.e., they have a unique
identifier that can be used to link them to other databases), georeferenced (i.e., located in a
specific system of geographic coordinates), and each corresponds to a building face that
can be seen from the street (see Figure 3). The starting point of this process is a 2D map
of building footprints where each polygon represents a single building and is associated
with at least one postal address and an estimate of the elevation (here, “elevation” means
“height above sea level”) of its highest point.

(a) (b)

(c) (d)

Figure 3. Computing exposed building faces and their respective view windows. (a) Polygon edges
are grouped into indexed building faces (only some edges are shown). Each color corresponds to a
single building face. (b) A visibility algorithm is used to determine the portions of building polygon
edges (red lines) reachable by rays originating from the panorama center (red dot), at a maximum
distance indicated by the red circle. (c) Building faces are kept if they satisfy viewing quality criteria,
including a maximum angle between panorama rays and the normal vector to each building face
(orange arrows). Valid and excluded building faces are shown in orange and blue respectively.
(d) View windows are computed for each remaining building face (orange line segments). The
angular bounds of each view window are indicated by dotted orange lines originating from the
panorama center (orange dot).
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In order to visually match what is conventionally read in architectural terms as a
building elevation, polygon edges need to be grouped into building faces, which are
sequences of almost contiguous, approximately parallel walls (see Figure 3a). First, an edge
is defined as significant if its length is at least l f (defined in Section 3.1), and two edges are
considered to have a similar orientation if the angle between them is less than a threshold
αe (taken as 10◦ in this work). Starting with an arbitrary edge and going along the polygon
boundary, edges are aggregated as long as they are approximately parallel and are not
interrupted by a significant edge with a different orientation. Each resulting edge group is
then given a face index i that is used to reference the subsequent sets of elevational street
views Vi.

These faces, however, are only considered for further processing if they satisfy specific
viewing quality criteria for at least one panorama. There are three such criteria, which are
evaluated via the faces’ coordinates and elevation attribute as well as the coordinates of
nearby panoramas. Let Fi be a building face with centroid Mi and Pj a panorama with
origin Cj. First, the visible proportion of Fi within Pj needs to exceed a length ratio of
rv. This “visibility”, however, is purely geometric and obtained from an angular sweep
algorithm [66] used to compute a visibility polygon from Cj (see Figure 3b). Any face that
does not satisfy this condition is too heavily occluded by another building. The second
criterion is the maximum angle αn between the normal vector to Fi (pointing away from
Cj) and the ray from Cj through Mi (taken as 45◦ in this work). Any face that exceeds this
angle will be too distorted in the resulting elevational street view. The last criterion is the
maximum absolute elevational difference between the base of Fi and Pj’s camera height
(taken as 2.4 m following Liang et al. [67]). This is a simple way to detect panoramas taken
from overpasses or tunnels, which are unlikely to display the intended building face.

3.3. Rendering Elevational Street Views

The view window Wij of any face Fi that satisfies the viewing quality criteria for Pj is
then computed by taking the two bounding rays from Cj towards each extremal vertex of
Fi (in terms of polar angle). These rays are intersected with the dominant plane of Fi going
through the face’s vertex that is closest to the camera. The resulting horizontal line segment
and the vertical line segment going from the base of Fi to its maximal elevation define a
narrow view window Ŵij. The view window Wij is obtained by expanding Ŵij in all four
directions with a margin factor mv. As demonstrated in Section 4.2.2, a margin factor of
1 (meaning that a margin equal to the width and height of Ŵij is added to the left/right and
top/bottom sides, respectively) ensures that views consistently include the entire elevation
of their intended building face.

An elevational street view Vij is obtained by transforming a region of a panorama Pj
that is expected to contain an intended building face Fi. The resulting image approximates
a perspective projection obtained from a pinhole camera. The transformation consists of
sampling rays from Cj through a regular grid of points within the view window Wij using a
constant resolution (80 pt/m in this work), and interpolating the pixels in Pj closest to each
ray. In that sense, it is akin to rendering. An additional aim is to make all views Vi of the
same intended face Fi comparable for identification purposes, which involves projecting
them onto a common image plane that is fronto-parallel to the dominant plane of Fi. In
that sense, the transformation is also a form of rectification. The quality of the rectification
in each image Vij, however, depends on the alignment between the view window Wij and
the dominant plane of Fi, as well as the quality of Pj itself (which might present stitching
artifacts). In this paper, it is assumed that Wij is close enough to the dominant plane of Fi to
allow visual identification.

3.4. Elevation Detection

Due to the necessary margins added to the narrow view windows, the number of
building elevations fully included in each elevational street view is unknown: there might
be none (because of occlusions not represented in a building map), one, or more (because the
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elevations may be narrow and close together). Elevations need to be not only recognized
but also individually localized within the image, which is the typical setup of object
detection. The detector used has a Faster R-CNN architecture [68] with a ResNet-50-FPN
backbone [69] pretrained on ImageNet. For each image, the model outputs a number of
bounding boxes associated with a confidence probability.

The last two layers of the network are fine-tuned on a custom elevation dataset made
up of 2000 elevational street views annotated with bounding boxes drawn around building
elevations. The dataset is randomly split 90%/10% between training and test sets, and
another 20% of the training set is randomly selected before each training run for validation
and hyperparameter optimization, yielding the following values. The optimization is
performed via mini-batch stochastic gradient descent (SGD) with a batch size of 2, a base
learning rate of 10−2, a momentum of 0.9, and no weight decay. The training is run
for 12 epochs, with the learning rate decayed by a factor of 0.1 at the tenth epoch. To reduce
overfitting, the training data are augmented using random horizontal flipping with 50%
probability and random changes in brightness, contrast, and saturation with a magnitude
of 0.5 and 50% probability.

3.5. Pairwise Similarity Estimation

Following similar problem settings found in different domains (e.g., person [62] or
vehicle [63] recognition), the estimation of building elevation similarity is solved using a
deep metric learning approach. The aim is to compute an image embedding such that the
Euclidean distance between feature vectors is small for images of the same building and
large otherwise. While alternative methods exist for image similarity estimation [70,71],
notably using the SIFT [72] or SURF [73] local descriptors, early experiments with local
feature matching suggested that this approach would be too sensitive to the significant
amount of similar local features between adjacent building faces, due to the large degree of
visual repetition found in each image of the dataset (identical windows, doors, etc.).

Deep metric learning only requires a dataset of positive and negative pairs of images,
which is produced by annotating pairs generated from the elevation detection dataset
(see Section 4.1.2). The resulting elevation similarity dataset is randomly split between
90% of building faces used for training and 10% for testing. Splitting by building faces
rather than elevation pairs ensures that the test set contains faces never seen before by the
network and, in practice, the resulting proportion of elevation pairs used for training is
almost identical (89.8%). As with the detection data, another 20% of training elevation pairs
is randomly split before each training run for validation and hyperparameter optimization.
The images provided to the network during training, testing, and inference are obtained
by cropping around each elevation box with a 300 px margin on each side to provide
context, resizing to a 256 px square, and normalizing the per-channel average and standard
deviation using values precomputed on the training set. Lastly, a random horizontal flip is
applied with a 50% probability to each pair. It is not applied independently to each image
because knowing the specific layout of an elevation is an important clue to distinguish
between adjacent building faces.

The elevation similarity network has a Siamese architecture whose backbone is sim-
ilar to the elevation detector (ResNet-50-FPN pretrained on ImageNet). The last spatial
pooling layer, however, is replaced by a channel pooling layer implemented as a 1 × 1 2D
convolution. This change trades the backbone’s translation invariance (less critical because
the detection step ensures that each elevation is centered in the image) for the ability to
represent the spatial layout of components within an elevation. The head of the network
as well as the training loss are also quite specific in that the network is built to output
a similarity score between 0 and 1 (akin to a match probability) rather than a distance,
and the loss is the binary cross entropy between the prediction and the label. Using a
classification loss in a deep metric learning setting is a relatively recent approach that has
provided good results [74,75], alleviating the need for complex sampling strategies. In this
paper, the similarity is calculated by taking the element-wise squared distance between
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the feature vectors and applying a single fully connected layer followed by a sigmoid. The
fully connected layer allows the network to focus on the parts of the image that matter
most for the similarity evaluation.

Following hyperparameter optimization, the head and last four layers of the backbone
are trained for 40 epochs using mini-batch SGD with a batch size of 32, a base learning rate
of 3 × 10−3, a momentum of 0.85, and a weight decay of 10−3. The learning rate schedule
includes a linear warm-up for the first 200 optimizer steps (starting with a factor of 10−1)
in order to stabilize the training. The training data are only augmented using random
horizontal flipping with 50% probability as other augmentations were found to have a
negative effect.

3.6. Elevation Grouping

The similarity scores between elevations {Eijk} sharing the same intended building
face Fi are used to create the building elevations groups {Gil}. Spectral clustering refers
to a class of algorithms that can efficiently compute such a grouping from a similarity
matrix by computing a low-dimensional embedding of the matrix (typically taking the first
few eigenvectors of its Laplacian) and clustering the corresponding vectors (e.g., using
k-means clustering) [76]. This method requires the number of groups k to be defined, which
is unknown since the elevational views can contain several buildings. This number is
determined by running successive rounds of spectral clustering with increasing values of k.
The best k maximizes the mean silhouette coefficient of samples, which measures the quality
of clustering [77]. To reduce the number of rounds, the possible values of k are bounded
by setting the minimum number of groups as the highest number of elevation boxes in a
single image, and the maximum as the total number of boxes minus one (assuming that at
least two boxes can be clustered, which is checked before grouping by testing that at least
one pair has a similarity score above 0.5).

3.7. Panorama Alignment

Every step so far has assumed that building footprints and panoramas are misaligned.
Feature matching methods (as described in Section 2) show that panorama poses can be
refined by finding correspondences between (i) panoramas and footprints and (ii) between
groups of panoramas. The novelty of the present method lies in matching semantic image
regions (i.e., building elevation boxes) rather than geometric image features. The alignment
task is formulated as a geometric optimization with two objectives (illustrated in Figure 4):
(i) obtain each building elevation ray Rijk closer to the centroid of its nearest building face
(independently of the intended face Fi); and (ii) obtain the intersection of elevation rays
from each group Gil closer to the dominant plane of their intended face Fi. Formally, the
optimization aims to find

arg min
Θ

[Oe(Θ) + Og(Θ)]

with

Oe(Θ) = ∑
i,j,k

min
i′∈Nj

d(Mi′ , Rijk(Θj))

Og(Θ) = ∑
i,l

d(Qil(Θil), Fi).

Here, Oe is the building elevation objective and Og is the building elevation group
objective. The vector Θj represents the pose parameters of panorama Pj, while Θ is the
concatenation of all Θj and Θil is the concatenation of the Θj of all panoramas associated
with Gil . The set Nj contains the indices of all building faces near the panorama Pj (within
a radius of 30 m and whose normal vector points towards Pj). The point Qil is the least-
squares intersection of all building elevation rays in the group Gil . Lastly, the function d is
the point-line distance.
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The building elevation objective Oe increases intra-panorama consistency by simulta-
neously aligning all building elevations in each panorama with their surrounding building
faces, while the building elevation group objective Og increases inter-panorama consistency
by aligning all grouped building elevations. Moreover, formulating Oe in terms of distance
to the closest face simplifies the optimization by avoiding explicit assignments that would
introduce discrete variables. Although the optimization is global, panorama poses are
loosely coupled because moving one panorama only affects the building elevation groups
it is associated with. Each entry of the Jacobian vector, which corresponds to the derivative
with regard to a pose parameter of a single panorama Pj, is efficiently determined by only
recomputing the ray intersections and distances with which this panorama is associated.
Because of the high likelihood of local minima, the optimization is solved using the basin-
hopping algorithm [78] with L-BFGS-B as its local minimizer [79]. Panorama poses are
bounded within 3 m on each side of the initial location parameters and 5◦ around the initial
heading parameter. The algorithm is found to converge within 20 global iterations with a
local minimization tolerance of 10−3.

Figure 4 shows an example of optimization results. In the left column, the top-left red
ray and the bottom-right green ray, for example, initially intersect the wrong face. After
optimization, rays go through the correct building face centroids and group intersections
lie on building faces.

Building elevation objective Oe Building elevation group objective Og
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Panorama center Cj
Building face Fi
Building elevation ray Rijk

Panorama center Cj
Intersection Qil of group Gil
Building face Fi
Building elevation ray Rijk

Figure 4. Example of local panorama alignment (top row: initial; bottom row: optimized). On the
left, each thin line is a building elevation ray Rijk, i.e., a ray from panorama center Cj through the
center of a detected building elevation box Eijk within elevational street view Vij. The color of Rijk
matches the panorama Pj it belongs to. After the alignment (dark arrows), each building elevation
ray Rijk goes through the center of its intended building face Fi. On the right, each dashed line is a
building elevation ray Rijk colored according to the group Gil it belongs to. The intersection Qil of the
rays within Gil is marked by a red circle. After the alignment (dark arrows), each intersection Qil lies
on the intended building face Fi.
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4. Results

As stated in Section 1, this paper focuses on long rows of terraced houses where the lack
of space between similar-looking buildings makes visual identification much more sensitive
to geolocation errors. Cities such as London, in which swathes of terraced houses were built
at a time by developers using variants of standard housing designs [80] are characterized
by local similarities but also global variations in their size, appearance, and style. This
makes London a good case study to analyze the challenges of visual identification such
as misalignment between geospatial data and SVI, and evaluate the method proposed in
this paper. A sample of all the annotations (building elevation detection, similarity, and
identification), the code, the weights of the trained similarity network, and the identification
results are provided as supplementary materials.

4.1. Data Acquisition and Annotation
4.1.1. Data Sources

Two main data sources were used in this study. The first is Google Street View
(GSV), which has the best coverage across London. GSV provides a public API which
allows users to specify the field of view, heading, and pitch of a virtual camera within a
panorama and download the corresponding perspective view. This interface, however,
is both inefficient and insufficient for large-scale visual identification: many different
elevational street views need to be rendered from each panorama, and valuable metadata
(such as the panorama’s orientation) are not accessible this way. Therefore, the public API
was only used to find panoramas in each area (described below) by uniformly sampling
inside the area’s georeferenced boundary and querying the panorama closest to each
point. Then, a different API described in previous works [81,82] was used to download the
whole panorama along with its metadata. The second data source is the Ordnance Survey
(https://www.ordnancesurvey.co.uk/, (accessed on 17 February 2024)), which provides a
detailed topographic map of building polygons along with various elevation data for each
polygon, including the elevation of its highest point.

Buildings were not randomly sampled but selected from nine Lower-Layer Super Output
Areas (LSOAs) in London with a high level of repeated property types and built in the same
period using data from the Valuation Office Agency (VOA) [83]. Sampling adjacent buildings
within each LSOA evaluates the method’s ability to distinguish between similar-looking
buildings, while selecting LSOAs that span a variety of locations and build periods evaluates
the method across different building configurations and styles (see spatial distribution in
Figure 5, and temporal and type distribution in Table 1). Their GIS boundaries and dwelling
statistics are provided by the Greater London Authority and the VOA, respectively.

Figure 5. The areas sampled in this work span various parts of London, featuring different architec-
tural styles and build periods. Each area is shown in orange next to its name. [Map tiles by Stamen
Design, CC-BY 3.0—Map data ©OpenStreetMap contributors].

https://www.ordnancesurvey.co.uk/
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Table 1. Property statistics and the number of buildings with at least one elevational street view,
broken down by area. Flats/maisonettes include converted terraced houses.

Main Prop. Types (2015)

LSOA Main
Build Period

Flats/
Maisonettes

Terraced
Houses

Buildings
with ESV

Camden 001B 1919–1929 700 40 109
City of London 001A 1965–1972 1090 10 5
Greenwich 004C 1993–1999 430 190 152
Hackney 006A Pre 1900 510 150 251
Islington 009B 1945–1954 620 50 45
Lambeth 035C 1930–1939 0 450 440
Newham 035D 1983–1992 100 340 379
Tower Hamlets 018A 2000–2015 360 120 137
Westminster 006B 1900–1918 770 0 73

4.1.2. Similarity Annotation

The building elevation similarity dataset is produced by reusing the dataset of anno-
tated building elevation boxes in the following way. Each combination of elevation boxes
from different views of the same building face is considered an image pair. Thus, a face Fi
with |Vi| elevational street views, where view Vij contains nij visible elevations, produces
∑j<j′≤|Vi | nijnij′ pairs. Each pair is then labeled by the annotators as “same”, “different”,
or “unknown”. Although the sequentiality of the combinations made the task easier for
annotators (who could rely on the memory of recent matches), errors still occurred for
particularly similar elevations. These were later automatically detected using a logical rule:
positive matches must form a consistent graph, meaning that if A matches B and B matches
C, A and C must match. A special case of this rule is that no two elevations from the same
view can match the same elevation from another view. The detected annotation errors,
which represented 0.8 % of the dataset, were manually corrected.

Comparisons were kept local because the panorama geolocation data are accurate
enough to ensure that visual identification only needs to differentiate between neighboring
building faces. Nevertheless, the resulting samples also present some interesting properties
compared to typical face or vehicle similarity datasets. First, the positive and negative pairs
are remarkably balanced, with 48.9% positive pairs. Second, while two adjacent elevations
are never completely identical, they also tend to be similar enough that the network has
to learn which features are discriminative enough for the task. Compared to randomly
pairing images, this makes the level of difficulty more homogeneous across samples.

4.1.3. Identification Annotation

In order to evaluate different identification methods, a final round of annotation was
performed to create a ground truth for visual identification. Each bounding box previously
drawn in an elevational street view was labeled as “true” when matching the intended
building face or otherwise as “false”. Manually identifying each bounding box from scratch
is time-consuming, especially for long stretches of adjacent buildings, requiring one to
go back and forth between the street view image and the map, while keeping in mind
the elevations already identified in the street. Therefore, an iterative method was used,
whereby the first round of visual identification was performed automatically, followed by
a much quicker round of manual corrections. The method used in this round was similar
to that described in Section 3, except that the process of similarity estimation was replaced
using annotated match labels, and groups were determined by extracting positive-match
subgraphs instead of using spectral clustering.

4.1.4. Annotation Statistics

An initial set of 3444 street view panoramas were collected from the nine LSOAs. Of
these, 1379 panoramas captured building faces that satisfied the viewing quality criteria
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(defined in Section 3.2) and were used to render 5017 elevational street views (4 per
panorama on average), representing 1591 buildings (see Table 1 for a breakdown by area).
On average, this resulted in 1 visible face and 3 elevational street views per building.

The 2000 annotated elevational street views yielded 2787 bounding boxes, which were
combined following the procedure described in Section 4.1.2 to produce 4157 image pairs
for similarity estimation, and 1198 of the 2000 views (corresponding to 2046 bounding
boxes) were also annotated with an identity following the method in Section 4.1.3. A small
proportion of the building elevation boxes (3.1% out of 2046) could not be unambiguously
identified because they covered either several building faces (including the intended one)
or only a part of the intended face. This map–image misalignment is of a different kind
from the one explored in this work, and is further described in Section 4.4.2. The final
identification dataset covered 544 building faces (from 453 buildings).

4.2. Quantitative Evaluation
4.2.1. Training

Both the elevation detector and the elevation similarity estimator were implemented
in Pytorch and trained on an Ubuntu workstation with an Intel Xeon W-2275 CPU (28 cores
at 3.30 GHz), 64 GB of RAM, and an NVIDIA RTX A5000 GPU (24 GB of RAM).

The metric used for the elevation detector was the average precision (AP) [84], which
is used to evaluate ranked predictions (i.e., in this case, candidate bounding boxes with
a confidence score). The AP at X% (noted APX) is a specific case where a candidate
bounding box is only considered correct if it overlaps X% of the ground truth bounding
box. The elevation detector achieves an AP of 73% on the test set, with an AP75 of 84%. For
comparison, a recent work by Zhu et al. [85] achieves 51% AP and 57% AP75 on a similar
façade identification task. Possible explanations for this significant increase include the
use of a better backbone network (not specified by Zhu et al.) and the focus on a more
architecturally homogeneous dataset (Zhu et al.’s data are from various cities).

The accuracy of the elevation similarity estimator on the test set is 93%. In particular,
replacing the backbone’s last spatial pooling layer with a channel pooling layer (as described
in Section 3.5) resulted in an increase of 11% in accuracy. The F1 score on the test set is also
93%, due to the elevation similarity dataset being quite balanced between the positive and
negative pairs (as noted in Section 4.1.2). On the machine described above, the elevation
similarity estimator has an inference speed of 0.023 s per image pair (without batching).

4.2.2. Identification

This quantitative evaluation focuses on the ability of group-aligned matching to over-
come the limitations of previous identification approaches when dealing with dense rows
of architecturally similar buildings. Only coordinate-based view clipping and instance
matching (described in Section 2) are evaluated because feature-based alignment operates
under different assumptions (available 3D building model and/or visible building cor-
ners). Previous methods are evaluated separately because they produce different results:
coordinate-based view clipping only outputs a final image, while instance matching, like
group-aligned matching, outputs a set of bounding boxes for each image, assigning a single
box per image to the intended building face. To demonstrate the importance of elevation
grouping in the identification process, an ablation study is performed by evaluating a
method called “instance-aligned matching” that performs panorama alignment without
groups (only using the building elevation objective described in Section 3.7).

One way to evaluate the effectiveness of coordinate-based view clipping is to analyze
the impact of image margins on the full inclusion of the intended elevation. While eleva-
tional street views can be created from the tightest view windows given by the building
footprint map, adding a margin on each side of the view increases the chance of fully
including the intended elevation. Adding excessive margin, however, also increases the
chance of including unintended elevations within the view. This trade-off is clearly shown
in Figure 6, where the percentage of elevational street views displaying fully included
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elevations is measured as a function of the relative margin added to all sides of each image
(in percentage of image width or height, depending on the side). This percentage is broken
down into elevational street views that only fully include the intended elevation, only
fully include one or more unintended elevation(s), or fully include both. Unsurprisingly,
the global percentage increases with the relative margin, but starts to plateau for higher
margin values. This is likely due to issues inherent to SVI (especially occlusions and privacy
blurring), which affect the elevations’ visibility no matter the margin. The trade-off clearly
appears when the percentage of elevational street views only fully include the intended
elevation peaks at around 40% at 60% margin, before getting mixed with unintended
elevations. At the same margin, however, around 10% of elevational street views still only
fully include unintended elevations. This demonstrates the limitations of coordinate-based
view clipping: minimizing the inclusion of unintended elevations (i.e., a 0% margin) signif-
icantly reduces the inclusion of full intended elevations (around 10%). Yet, maximizing the
inclusion of full intended elevations necessarily increases the inclusion of full unintended
elevations, without any way of differentiating the two.
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Figure 6. Evaluating coordinate-based view clipping. This graph shows the percentage of elevational
street views containing fully included elevations as a function of the relative margin added to expand
the view window. The percentage is broken down into the kind of elevations fully included in the
views (from top to bottom): unintended elevation(s) only, mix of intended and unintended elevations,
and intended elevation only. Corresponding examples of elevational street views are shown on the
right, with the intended elevation box in orange and unintended boxes in blue.

Instance, instance-aligned, and group-aligned matching are compared in two scenarios:
single- and multi-view. The expected output of the single-view scenario is a single building
elevation per face, rendered from the panorama whose origin is closest to the face. Although
panorama alignment is still performed using all the elevational street views of each face,
only the result for the closest elevational street view is kept when computing the metrics. In
the multi-view scenario, instance matching is performed independently for each elevational
street view of the same building face, while aligned and group-aligned matching are
performed as described. In order to compare methods in an optimal setting and focus on
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the building elevation matching part of the pipeline, the same annotated bounding boxes
are used for all.

The metrics used to compare methods are accuracy and F1 score. While accuracy
evaluates predictions on both positive and negative building elevations, the F1 score
focuses on the positive ones, which matters more from an information retrieval perspective.
It is defined as the harmonic mean of precision and recall, where precision is the ratio of
correctly predicted positive labels over predicted positive labels (including erroneous ones),
and recall is the ratio of correctly predicted positive labels over positive labels (including
those missed by the method). All metrics are computed per building face, meaning that
all building elevations in the views of a given face have to be correctly labeled for it to be
counted as correctly identified. In the single-view scenario, building elevations only come
from one elevational street view per face, but in the multi-view scenario, predicted labels
are aggregated over all the elevational street views of a face. As shown in Table 2, group-
aligned matching outperforms instance matching for both metrics, particularly in the more
challenging multi-view scenario. Instance-aligned matching performs worse than group-
aligned matching, and even worse than instance matching in the single-view scenario,
showing that simply pushing building elevation boxes towards their closest building face
can reinforce initial misalignments instead of correcting them. This demonstrates that
finding building elevation groups across panoramas is an essential part of the pipeline.

Table 2. Evaluating bounding box-based methods in the single- and multi-view scenarios. Instance
matching is used by the previous works described in Section 2.3. Instance-aligned matching is an
ablated version of group-aligned matching. The best results for each metric are shown in bold.

Single-View Multi-View

Method Accuracy F1 Accuracy F1

Instance matching 90% 92% 79% 85%
Instance-aligned matching 88% 92% 83% 90%
Group-aligned matching 93% 96% 88% 93%

4.3. Qualitative Results
4.3.1. Similarity Estimation

Figure 7 shows examples of building elevation pairs whose similarity is correctly
estimated. The left column contains two easier examples for which the network outputs
highly confident similarity scores (very low for different building faces and very high for
the same building face). The negative pair is made easier by the large change in viewing
angle and visual context around building elevations. Conversely, in the positive case, the
viewing angles and contexts are very similar. The right column contains two of the pairs
that the network is the least confident about (giving a similarity score close to 0.5). In both
cases, the building face is only partially visible due to occlusions, and for the positive pair,
the bottom part changes significantly.

Failure cases are shown in Figure 8. Here, the similarity estimator is very confidently
wrong. The positive pair with a low similarity score features significant changes in context
due to the very different panorama locations. The negative pair with a high similarity score
comes from a street where buildings are particularly similar and clues that could help the
estimation (such as the position of the street lamp) are very thin.

4.3.2. Identification

Figure 9 shows two examples of visual identification. Due to the misalignment
between panorama pose data and building footprints, most building elevation rays fail
to go through the right building face. In the first example, instance matching erroneously
matches the only ray crossing the intended face in (a), and does not match anything in (b).
The building elevation objective is enough to correctly align the rays since both the aligned
and group-aligned methods correctly match the building elevations. This objective includes
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all the building elevation rays originating from panoramas (a–c), including those going
through neighboring building faces (omitted in the map), which helps find panorama
poses more consistent with the surrounding building faces. In the second example, instance
matching fails to find the right building elevation box in (a) because both rays go around the
intended face without intersecting with it. Instance-aligned matching fails in (b), potentially
due to the building elevation objective shifting the panorama in such a way that none of the
rays intersect the intended face. Adding the building elevation group objective, however,
ensures that building elevations that were grouped together by the similarity network keep
consistent ray directions during the optimization, resulting in all three rays intersecting
with the intended face.

Figure 7. Successful examples of pairwise similarity estimation (top row: different building faces,
orange frame; bottom row: same building faces, green frame). The score indicates the network’s
confidence (from 0 to 1) that the central elevations come from the same building face.
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Figure 8. Examples of failure cases of pairwise similarity estimation (top row: same building faces,
green frame; bottom row: different building faces, orange frame).
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Panorama center

Unintended building face

Intended building face

Unintended elevation ray
Intended elevation ray

Unintended elevation

Intended elevation

Instance matching
Instance-aligned matching
Group-aligned matching
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Figure 9. Examples of identification results. The left panel is a map showing the intended (thick
orange) and unintended (thick blue) building faces, three panoramas close to the intended building
face, and the building elevation rays going through the elevation boxes’ centers (marked by a cross)
detected in each panorama. Each panorama provides a single elevational street view for the intended
building face, shown on the right. Each elevational street view contains detected building elevation
boxes with the same color scheme as the map. The colored dots under each box show the box selected
by each identification method. For example, the (blue) unintended elevation box in (a) corresponds
to the (thin blue) unintended elevation ray in the map that appears to go from the center of the
panorama (a) through the intended building face, which is why this elevation box is erroneously
selected by the instance matching method (shown by the pink dot underneath the box). However,
since panoramas and building faces are misaligned, this ray does not actually go through the intended
building face. Images (b–f) have a similar correspondence between building elevation rays in the
map and building elevation boxes in the elevational street view.

4.4. Discussion
4.4.1. Results

While the results in Sections 4.2.2 and 4.3.2 validate the effectiveness of group-aligned
matching, comparing its accuracy to other classes of building identification methods is
challenging because of the different inputs, outputs, and assumptions inherent to each.
Coordinate-based view clipping, which only uses geometric parameters, does not produce
a bounding box, but its accuracy was approximated by taking a bounding box-annotated
dataset and checking how often clipped views contain their intended box without con-
taining an adjacent box. As shown in Figure 6, this accuracy peaks slightly above 40%.
However, both this value and the corresponding value of the window margin parameter
(around 60%) most likely depend on the specific characteristics of the evaluation dataset
(including the average spacing between buildings and the average magnitude of panorama
pose errors). Meanwhile, feature-based alignment was not evaluated due to the lack of a
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georeferenced 3D model and the difficulty of reliably detecting the corners and vertical
edges of terraced houses, which make up a large portion of the evaluation dataset. It is
worth noting that that a recent feature-based alignment approach [44] achieved a (single-
view) building identification accuracy of 83.5%, although the difference between evaluation
datasets makes this result difficult to compare to the accuracy reported in the present work.

Instance matching, which forms the basis upon which group-aligned matching builds,
is more straightforward to compare. As shown in Table 2, the accuracy of group-aligned
matching in the single-view scenario is 93%, a gain of 3% compared to instance matching.
Similarly, the F1 score of group-aligned matching is 96%, representing a gain of 4% com-
pared to instance matching. To put these results in perspective, the two most recent works
using instance matching report an identification accuracy of 90.5% [47] and 99.6% [46],
respectively, and for the latter work, an F1 score of 87.9% [46], although once again, the
difference between the urban settings considered in each work precludes accurate com-
parisons. In the multi-view scenario, the accuracy of group-aligned matching is 88%,
outperforming instance matching by 9%, and the F1 score of group-aligned matching is
93 %, outperforming instance matching by 8%. These results support the argument that
retrieving multiple views per building face allows visual consistency checks that increase
the robustness of identification. Moreover, the ability to view building faces from different
angles increases the visibility of the features of interest, which increases their usefulness for
further visual analysis in downstream applications.

The accuracy gain of group-aligned matching compared to instance matching is 3%
in the single-view scenario and 9% in the multi-view scenario. This difference can be
partially explained by a geometric argument. The farther a panorama origin Cj is from a
building face Fi, and the larger the angle αn (defined in Section 3.2), the more panorama
pose errors impact the geometric parameters of the elevational street view Vij. Since farther
panoramas are used in the multi-view scenario, their pose errors have a stronger impact on
the corresponding elevational street views. The views from these additional panoramas are
more likely to be shifted in a way that compromises the accuracy of instance matching.

These findings have both theoretical and practical implications for the wider field of
urban analytics. With regards to theory, previous works have argued for the epistemic
advantages of street view imagery (SVI) by providing a unique point of view and a greater
level of detail compared to other, more commonly used sources of imagery [3]. Our
findings nuance this argument by showing that SVI pose errors and occlusions can seriously
affect the reliability of building-level analysis, especially in the case of narrow, densely
packed buildings. A related theoretical question is whether retrieving multiple views per
building face consistently improves the accuracy of downstream analysis across a wide
variety of tasks. While answering this question is beyond the scope of this paper, our
findings suggest that performing multi-view analysis requires paying particular attention
to the way that multiple views are collected and assigned to the same building face. In
practical terms, the first implication of our work is that methods that rely on SVI to perform
building-level analysis should include an assessment of the rate of misidentified buildings
in their data. Second, collecting multiple views per building face is not only useful for
downstream applications (notably to work around occlusions), but can also be leveraged at
the identification stage to ensure that views are consistent, thus increasing the robustness
of the linkage between georeferenced models and SVI.

4.4.2. Limitations and Future Work

As shown in Sections 4.2.1 and 4.3.1, both the elevation detector and elevation similar-
ity estimator perform well on their respective test sets. Using deep convolutional networks
for both tasks gives access to high-level visual features that are more useful than corners
and edges to separate and differentiate buildings faces that are adjacent and architecturally
similar. While these results are encouraging, the models should be tested in different cities
around the world with similar urban layouts to evaluate their generalization performance
and quantify the “domain gap” [62]. While more diverse data could improve generalization,
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training location-specific models instead could provide higher accuracy. More research is
needed to quantitatively evaluate this trade-off.

Group-aligned matching has two main limitations, as illustrated in Figure 10. First,
panorama pose misalignment can occasionally be difficult to correct due to a lack of
neighboring building faces (for example, if buildings are only on one side of the street).
Even if building elevation rays are grouped together, all the groups may simultaneously
shift so that all building elevations are off by one building face. While street segments
featuring buildings on a single side are relatively uncommon in the evaluation dataset,
an additional geometric analysis could be performed during the first step (Section 3.2) to
detect building configurations that may not provide enough information to realign the
panoramas accurately.

Panorama center
Unintended building face
Intended building face
Unintended elevation ray
Intended elevation ray

Unintended elevation

Intended elevation

Instance matching
Instance-aligned matching
Group-aligned matching

(c)

(a)

(b)

(a) (b) (c)

(d)

(e)
(f)

(d) (e) (f)

Figure 10. Some failure cases of group-aligned matching. As in Figure 9, each panorama provides
a single elevational street view (a–f) for the intended building face, shown as a thick orange line
segment. For each panorama, the colored building elevation rays in the map on the left match the
colored elevation boxes in the corresponding image on the right. Legend is the same as Figure 9.

The second limitation happens when (geometric) building faces cannot be properly
matched to (visual) building elevations, or vice versa, for example, because the data sources
are not synchronized (a building may have been constructed, demolished, subdivided,
or extended) or because the street-level perspective does not provide enough context to
unambiguously separate building elevations. The second example in Figure 10 shows two
building faces erroneously annotated as one because they are visually homogeneous and
the left face does not seem to have a door (which is actually on the side of the building).
This kind of misalignment between footprints and SVI is topological rather than spatial,
and is not specific to group-aligned matching. It is worth noting, however, that only a small
proportion of the building elevation bounding boxes (3.1%) were found to have this issue
in the evaluation dataset (as detailed in Section 4.1.4). Integrating additional visual data
from more frequently updated sources (such as satellite imagery), following an approach
similar to that of Cao et al. [86], is an interesting direction to address this limitation.

In terms of methodological limitations, the pipeline presented in this paper involves
various parameters and assumptions whose impact on the overall performance remains to
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be evaluated, especially around the first step (finding exposed building faces, Section 3.2)
and the last (panorama alignment, Section 3.7). While the effect of image margins was
quantified in Section 4.2.2, and deep learning hyperparameters for each model were tuned
on their respective validation sets, more analysis is required to better understand the
sensitivity of the method.

5. Conclusions

This paper introduces a new visual identification method that generates a multi-
view database linking building footprints with views extracted from SVI. Focusing on
the dense rows of narrow houses with a high level of repetition raises a challenge that
previous identification methods are not equipped to tackle due to panorama misalignment,
occlusions, and the lack of geometric features separating building faces. Group-aligned
matching, in contrast, combines the advantages of previous approaches by (i) locating
individual building elevations using a deep neural network and (ii) performing model–
image alignment using these detected elevations. In addition, it increases the robustness
of visual identification by collecting multiple views per building face and ensuring their
visual consistency using a deep Siamese network. This yields significant gains in accuracy
and F1 score, particularly in the multi-view scenario. The main conclusion of this work
is that previous identification methods lack robustness to panorama pose errors when
buildings are narrow, densely packed, and subject to occlusions, while collecting multiple
views per building can be leveraged to increase the robustness of visual identification by
ensuring that building views are consistent.

Multi-view identification opens many avenues for future research. From a computer
vision perspective, creating a multi-view dataset enables applications such as building re-
identification for geo-localization, view synthesis, and 3D reconstruction. Reliably indexing
building views at scale also provides an essential linkage between visual and statistical
data sources, enabling multi-modal building-level analysis with many applications in
architecture and urban studies, including the fine-grained mapping of building typology,
style, level of upkeep, and real estate value. The analysis of transformations over time
is another promising research area that comes with its own challenges due to the lack of
synchronization between maps and SVI [6], linking to the problem of “persistent place
recognition” explored in robotics [87]. Lastly, the potential privacy issues raised by the
cross-referencing of data sources at the building level [3] need to be assessed and addressed,
for example, taking inspiration from research in person re-identification [88].
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